首页 > 论文发表百科 > 椭圆形偏微分方程论文研究步骤

椭圆形偏微分方程论文研究步骤

发布时间:

椭圆形偏微分方程论文研究步骤

椭圆型偏微分方程如下:

椭圆型偏微分方程,简称椭圆型方程,一类重要的偏微分方程。早在1900年D.希尔伯特提的著名的23个问题中,就有三个问题是关于椭圆型方程与变分法的。八十多年来,椭圆型方程的研究获得了丰硕的成果。椭圆型方程在流体力学、弹性力学、电磁学、几何学和变分法中都有应用。拉普拉斯方程是椭圆型方程最典型的特例。

partial differential equation of elliptic type 椭圆型变微分方程

其典型代表是拉普拉斯方程与泊松方程(称Δu为拉普拉斯算子)

Δu=-4πρ(x,y,z)(2)

拉普拉斯方程的二次连续可微解称为调和函数,方程(1)有形如的特解,其中S是一个曲面,μ为定义在S上的连续函数,(3)所定出的函数在S之外处满足(1),非齐次方程(即泊松方程)(2)有重要特解,它是以ρ为密度的体位势

当ρ在Ω内连续可微时,由(4)所确定的函数u在Ω内满足(2),在Ω外满足(1)。应用格林公式得,这说明:调和函数在区域内任何点的值,可由这函数在区域界面上的值以及法线微商来表示。

在单位球上的狄利克雷问题,对球面坐标为(ρ,θ,j)的点有其中(θ0,j0)是积分的变元,是球面坐标。cosυ是方向(θ,j)和(θ0,j0)交角的余弦。椭圆型方程的理论已相当完整。

partial differential equation of elliptic type 椭圆型变微分方程其典型代表是拉普拉斯方程与泊松方程(称Δu为拉普拉斯算子)Δu=-4πρ(x,y,z)(2)拉普拉斯方程的二次连续可微解称为调和函数,方程(1)有形如的特解,其中S是一个曲面,μ为定义在S上的连续函数,(3)所定出的函数在S之外处满足(1),非齐次方程(即泊松方程)(2)有重要特解,它是以ρ为密度的体位势当ρ在Ω内连续可微时,由(4)所确定的函数u在Ω内满足(2),在Ω外满足(1)。应用格林公式得这说明:调和函数在区域内任何点的值,可由这函数在区域界面上的值以及法线微商来表示。在单位球上的狄利克雷问题,对球面坐标为(ρ,θ,j)的点有其中(θ0,j0)是积分的变元,是球面坐标。cosυ是方向(θ,j)和(θ0,j0)交角的余弦。椭圆型方程的理论已相当完整。椭圆型偏微分方程,数值方法Diptic partial differential equation, numerical methods较高的精度,必须不在逐片线性函数空间中寻求近似 解,而是在逐片二次函数空间中,或更一般地,在逐 片多项式函数空间中去寻求.在这种情况下,对于具 有适当光滑性的解其精度为O(h几),这里k是所用多 项式的次数. 除三角形有限元外人们也利用四边形有限元.然 而,当四边形的边不平行于坐标轴时,必须使用等参 数技术,也就是说,开始用一种非退化变换把问题中 的有限元映射到一种标准型上(在目前情况下映射到 边平行于坐标轴的矩形上),这个变换的逆由标准有 限单元上近似解同样的函数给出.人们可以利用曲 边三角形和四边形(又要用到等参技术).当在有光滑 边界的域上用高于一阶精度的方法求解问题时这是必 要的. 除r卸ePKHH类型的有限元法外,还有另外一种所 谓的非协调有限元方法,在这类方法中不在原来空间 的子空间中寻求解.通常这种方法适用于高于二阶的 椭圆型偏微分方程问题. 有限差分法和有限元法导致有稀疏系数矩阵的高 阶线性代数方程组;人们可以压缩这些矩阵中大部分 零元素(见【川,【12】).迄今另一种近似求解椭圆型偏 微分方程边值问题的方法已经显著发展起来:边界元 法([13]). 椭圆型偏微分方程,数值方法L函州允,州目成压城别白. 闰卿坛刀,倒m州加In州加油;,几月,uT。,eeKoro Tona ypa。- .e皿e叱.e“e~e MeTo几u Pe山e妞砚,l 近似确定椭圆型偏微分方程解的一种方法.在对椭 圆型方程提出的各类问题中,边值问题和带Q‘勿条 件的问题得到了最透彻的研究.后者是不适定的,且 需要特殊的解法([l]).对椭圆型方程比较典型的提 法是边值问题,并已经提出了很多不同的数值方法求 其近似解(见【2],【31).在计算实践中网格法是最广为 传播的,其中有有限差分法(见差分法(山玉正泊份n止th. 。由),差分格式理论(differenCe schem留,theoryof), 【4」,!5」)和有限元方法(见【6」一【91).虽然这些方法 构造近似解的途径不同—前者逼近方程和边界条件 (见微分边值问题的差分边值问题逼近(approx止扭tionof a di漩比nt妞boundary耐ue problon bydiffi泊泊份bot川户 血州稚lue problen犯)),而后者逼近所求解的本身— 然而最终确定近似解的代数方程组常常基于类似的想 法,并在一些情况下完全一致. 有限差分法的本质如下.用离散点(结点)集代 替原问题中自变量连续变化的区域,并称此离散点集 为网格(颤d);用差分关系逼近出现在微分方程和边 界条件中的导数;于是微分方程的边值问题就被一个 代数方程组(一种差分格式(differen沈岌为~))所取 代.如果所得到的差分边值问题是可解的(可能在足 够细的网格上)并且如果在充分加细的网格上

(1)文献研究法根据所要研究内容 ,通过查阅相关文献获得充足的资料,从而全面地了解所研究课题的背景、历史、现状以及前景。(2)研究项目分析法在进行理论的搜集与分析之后,根据现有的研究项目整体系统进行分析与设计,实现理论与实践的相结合,使理论有理有据,设计更合理。

科普中国·科学百科:偏微分方程

偏微分方程毕业论文

本文对于一阶非线性偏微分方程模型,研究了方程中系数,边界条件和初始条件中参数的估计方法,使用最小二乘法准则,藉助变分学推导出一些必要条件.【作者单位】: 【关键词】: 偏微分方程—参数估计 【正文快照】:引古口 现代科学和技术的发展,已经有可能为所研究客观系统建立变量间的数学模型。现代测量技术也有可能测量出世界上许多物理或化学量.基于这些可用信息,怎样从一般模型中找出适合于特定要求的一个,这就是要推测模型方程的未知部分,例如方程中的参数,边界条件或初始条件

这儿的数学博士应该很少.

要的话请联系我邮箱(点我可见)。13 【篇名】 偏微分方程组的对称群及其在弹性力学方程组中应用 CAJ原文下载 PDF原文下载 【作者】 张鸿庆. 朝鲁. 唐立民. 【刊名】 大连理工大学学报 1997年03期 编辑部Email 《中文核心期刊要目总览》来源期刊 “中国期刊方阵”入选期刊 ASPT来源刊 CJFD收录期刊 【机构】 大连理工大学数学科学研究所. 大连理工大学工程力学研究所. 【关键词】 偏微分方程. 弹性力学. 对称群/不变向量场. 符号运算. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 给出了非退化线性偏微分方程组及二次型泛函对称群的不变向量场的一般形式和一类特殊形式非线性偏微分方程组对称群的简化计算条件;利用以上结论及作者以往工作,借助符号运算语言MathematicaTM计算了平面弹性力学方程组一阶Lie-Bactlund对称群的不变向量场,以及应力函数对应的三维弹性力学方程组的Lie代数.为构造弹性力学方程组的一类广泛精确解及守恒律提供了必要的基础,并说明了结论对计算偏微分方程组对称群时的简化作用 【光盘号】 SCTC9706 14 【篇名】 力学中一类变系数微分方程可调参数模型解法 CAJ原文下载 PDF原文下载 【作者】 赵文福. 封营儒. 连星耀. 黎明安. 【刊名】 西安理工大学学报 1995年02期 编辑部Email CJFD收录期刊 【机构】 西安理工大学机械工程系. 【关键词】 可调参数. 变系数微分方程. 非均匀控制参数. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 结合一种非均匀控制参数,提出了一种变系数微分方程的可调整参数模型解法,可以很方便地处理由于物理上、几何上的非均匀、非线性而导致数学上的变系数微分方程,应用这种模型可以用非常少的单元得到较满意的数值结果。 【光盘号】 SCTC9508 31 【篇名】 材料力学弯曲问题中集中量与分布量的统一处理 CAJ原文下载 PDF原文下载 【作者】 周锡勤. 张存道. 【刊名】 现代电力 1995年02期 编辑部Email CJFD收录期刊 【机构】 北京动力经济学院. 【关键词】 集中量. 分布量. 弯曲变形. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 介绍了利用δ函数统一处理集中量与分布量的一般方法。着重讨论了这种方法在建立含集中量的杆件弯曲时的平衡微分方程的应用,从而推广了材料力学中杆件弯曲时的平衡微分方程。该方程更全面更精确地反映了杆件弯曲这一物理现象。作者把它称为梁弯曲时的广义平衡微分方程。 【光盘号】 SCTC95S5 38 【篇名】 双相材料空间中平片界面裂纹问题的超奇异积分-微分方程 CAJ原文下载 PDF原文下载 【作者】 乐金朝. 汤任基. 【刊名】 科学通报 1996年15期 编辑部Email 《中文核心期刊要目总览》来源期刊 “中国期刊方阵”入选期刊 ASPT来源刊 CJFD收录期刊 【机构】 郑州工学院道路检测与CAE技术研究中心. 上海交通大学工程力学系 郑州 450002 . 上海 200030. 【关键词】 双相材料. 平片界面裂纹. 超奇异积分-微分方程. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 <正> 随着复合材料的广泛应用,界面断裂力学成为国际断裂界的前沿研究课题,该领域的研究工作引起了国内外力学家、金属物理学家及材料科学家的广泛关注,并取得了许多新进展。据作者所知,目前的工作主要是研究二维问题,由于数学和力学等方面的困难,三维界面断裂力学方面的研究工作报道较少。本文利用双相材料空间在集中力作用下的弹性力学基本解,使用边界元法,在有限部积分的意义下将任意形状的平片界面裂纹问题归结为一组以裂纹面上的位移间断为未知函数的超奇异积分-微分方程。此组方程对于进一步开展三维界面断裂力学问题的研究具有重要意义。 【光盘号】 SCTA96S4 39 【篇名】 常微分方程的不变式在量子力学中的应用 CAJ原文下载 PDF原文下载 【作者】 杨进. 【刊名】 大学物理 1998年08期 编辑部Email 《中文核心期刊要目总览》来源期刊 CJFD收录期刊 【机构】 成都气象学院基础科学系. 【关键词】 常微分方程. 不变式. 库仑场. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 利用常微分方程的不变式,非常方便地求解了一些量子力学问题. 【光盘号】 SCTA9809 40 【篇名】 保守力系的变形拉格朗日方程及其应用 CAJ原文下载 PDF原文下载 【作者】 梁志强. 【刊名】 泰安师专学报 2000年06期 编辑部Email CJFD收录期刊 【机构】 泰安师专物理系!山东泰安271000. 【关键词】 Lagrandge方程. 轨道微分方程. 轨道方程. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 从保守力系的拉格朗日方程出发 ,导出一种用于求解保守系统轨道微分方程的变形拉格朗日方程。并将其应用于有心力问题及抛体问题 ,导出了有心力问题的轨道微分方程Binet公式及抛体轨道方程。保守力系的变形拉格朗日方程提供了求解运动物体轨道方程的新方法 ,同时也丰富了分析力学的教学内容。 【光盘号】 SOCI0105

椭圆积分毕业论文

数学研究性学习报告 (妙趣横生的数学)一:数学史上的三次危机。毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。 第二次数学危机导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如翻掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。 罗素悖论与第三次数学危机。 十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……” 可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。 罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。 其实,在罗素之前集合论中就已经发现了悖论。如1897年,布拉利和福尔蒂提出了最大序数悖论。1899年,康托尔自己发现了最大基数悖论。但是,由于这两个悖论都涉及集合中的许多复杂理论,所以只是在数学界揭起了一点小涟漪,未能引起大的注意。罗素悖论则不同。它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。如G.弗雷格在收到罗素介绍这一悖论的信后伤心地说:“一个科学家所遇到的最不合心意的事莫过于是在他的工作即将结束时,其基础崩溃了。罗素先生的一封信正好把我置于这个境地。”戴德金也因此推迟了他的《什么是数的本质和作用》一文的再版。可以说,这一悖论就象在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。 危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”1908年,策梅罗在自已这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。公理化集合系统的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展等等。二:经典数学问题:七桥问题 著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。 有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。 当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。 Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。 后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。 七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成. 欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。 接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案! 1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。 数学的世界奥妙无穷,大家尽情驰骋吧!附录:永远的大师—欧拉欧拉(Euler,1707-1783),瑞士数学家及自然科学家。在1707年4月15日出生於瑞士的巴塞尔,1783年9月18日於俄国的彼得堡去逝。 欧拉出生於牧师家庭,自幼已受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。 欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一.伯努利的特别指导,专心 研究数学,直至18岁,他彻底的放弃当牧师的想法而专攻数学,於19岁时(1726年)开始创作文章,并获得巴黎科学院奖金。1727年,在丹尼尔.伯努利的推荐下,到俄国的彼得堡科学院从事研究工作。并在1731年接替丹尼尔第一.伯努利 ,成为物理学教授。在俄国的14年中,他努力不懈地投入研究,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府 的要求,解决了不少如地图学、造船业等的实际问题。1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士 腓特烈大帝的邀请到德国科学院担任物理数学所所长一职。他在柏林期间,大大的扩展了研究的内容,如行星运动、刚体运动、热力学、弹道学、人口学等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何 及其他数学领域均有开创性的发现。 1766年,他应俄国沙皇喀德林二世敦聘重回彼得堡。在 1771年,一场重病使他的左眼亦完全失明。但他以其惊人的 记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学着作,直至生命的最后一刻。 欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域。此外,他 是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》(1748),《微分学原理》(1755),以及《积分学原理》(1768-1770)都成为数学中的经典着作。 欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支(如无穷级数、微分方程等)的产生 与发展奠定了基础。 欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目。他计算出ξ函数在偶数点的值: 。他证明了a2k是有理数,而且可以伯努利数来表示。 此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,,其值近似为 ... 在18世纪中叶,欧拉和其他数学家在解决物理方面的问过程中,创立了微分方程学。当中,在常微分方程方面,他 完整地解决了n阶常系数线性齐次方程的问题,对於非齐次方程,他提出了一种降低方程阶的解法;而在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法。欧拉所写的《方程的积分法研究》更是 偏微分方程在纯数学研究中的第一篇论文。 在微分几何方面(微分几何是研究曲线、曲面逐点变化性质的数学分支),欧拉引入了空间曲线的参数方程,给 出了空间曲线曲率半径的解析表达方式。在1766年,他出版了《关於曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑。他将曲面表为 z=f(x,y),并引入一系列标准符号以表示z对x,y的偏导数 ,这些符号至今仍通用。此外,在该着作中,他亦得到了曲面在任意截面上截线的曲率公式。 欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B 函数,这证明了椭圆积分的加法定理,以及最早引入二重积 分等等。在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式。欧拉还给出了费马小定 理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果奠定了数论成为数学中的一个独立分支。欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积。而且还解决了着名的柯尼斯 堡七桥问题。欧拉对数学的研究如此广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。

华罗庚,1910年11月12日出生于江苏金坛县,父亲以开杂货铺为生。他幼时爱动脑筋,因思考问题过于专心常被同伴们戏称为“罗呆子”。他进入金坛县立初中后,其数学才能被老师王维克发现,并尽心尽力予以培养。初中毕业后,华罗庚曾入上海中华职业学校就读,因拿不出学费而中途退学,故一生只有初中毕业文凭。 此后,他开始顽强自学,每天达10个小时以上。他用5年时间学完了高中和大学低年级的全部数学课程。1928年,他不幸染上伤寒病,靠新婚妻子的照料得以挽回性命,却落下左腿残疾。20岁时,他以一篇论文轰动数学界,被清华大学请去工作。 从1931年起,华罗庚在清华大学边工作边学习,用一年半时间学完了数学系全部课程。他自学了英、法、德文,在国外杂志上发表了三篇论文后,被破格任用为助教。1936年夏,华罗庚被保送到英国剑桥大学进修,两年中发表了十多篇论文,引起国际数学界赞赏。1938年,华罗庚访英回国,在西南联合大学任教授。在昆明郊外一间牛棚似的小阁楼里,他艰难地写出名著《堆垒素数论》。1946年3月,他应邀访问苏联,回国后不顾反动当局的限制,在昆明为青年作“访苏三月记”的报告。1946年9月,华罗庚应纽约普林斯顿大学邀请去美国讲学,并于1948年被美国伊利诺依大学聘为终身教授。不久,妻子带着三个儿子来到美国与其团聚。 1949年,华罗庚毅然放弃优裕生活携全家返回祖国。1950年3月,他到达北京,随后担任了清华大学数学系主任、中科院数学所所长等职。50年代,他在百花齐放、百家争鸣的学术空气下著述颇丰,还发现和培养了王元、陈景润等数学人才。1956年,他着手筹建中科院计算数学研究所。1958年,他担任中国科技大学副校长兼数学系主任。从1960年起,华罗庚开始在工农业生产中推广统筹法和优选法,足迹遍及27个省市自治区,创造了巨大的物质财富和经济效益。1978年3月,他被任命为中科院副院长并于翌年入党。 晚年的华罗庚不顾年老体衰,仍然奔波在建设第一线。他还多次应邀赴欧美及香港地区讲学,先后被法国南锡大学、美国伊利诺依大学、香港中文大学授予荣誉博士学位,还于1984年以全票当选为美国科学院外籍院士。1985年6月12日,他在日本东京作学术报告时,因心脏病突发不幸逝世,享年74岁。

翻开近代数学的理论书籍,与阿贝尔相关的定理、公式随处可见,如阿贝尔级数、阿贝尔基本定理、阿贝尔极限定理等等。有这么多的概念和定理与自己的名字联系在一起的数学家,在数学史上是很少见的。遗憾的是阿贝尔英年早逝,仅活了27岁,没能在生前享受自己的成就所带来的荣耀。

阿贝尔是挪威著名的数学家,近代数学发展的先驱,1802年8月5日生于挪威芬岛。从小生活在农村的阿贝尔,在很小的时候就表现出了惊人的数学才能。在学校里,他的这种表现引起老师霍姆伯的注意。在老师霍姆伯介绍下,他开始阅读牛顿、欧拉、高斯的数学著作。老师的引导和大师们著作的魅力使他踏进了数学的王国,从此再也不想出来。如痴如醉的钻研使他的进步神速,时隔不久,他就攻到了数学领域的前沿阵地。

1821年,刚进入奥斯陆大学的阿贝尔便全身心投入到数学研究之中。功夫不负有心人,3年后,他找到了不能用根式求解五次方程的原因,并写成论文。遗憾的是这篇划时代的论文并未引起数学界的注意。但阿贝尔并未灰心,自费印刷了证明五次方程不可解的论文邮寄给高斯,希望能得到数学巨人的接见。令人惋惜的是,一生勤勉的高斯,虽有许多伟大的数学发现,却错过发现这个伟大的数学天才的机会。至死他都没打开阿贝尔寄来的论文。

但凡伟大的科学家都有愈挫愈勇的精神,阿贝尔同样如此。1826年,满怀数学热情的阿贝尔前往数学家云集的巴黎,结识了当时著名的数学家勒让德和柯西等人,并在他们的建议下开始研究椭圆积分。同年,他给法国科学院写了一篇关于椭圆积分的论文,但结果石沉大海,他只好再回柏林。次年,贫病交迫的阿贝尔为了生计回到了故国挪威,靠做家庭教师维持生活。

1828年,阿贝尔发表的论文终被法国数学界肯定,并获得空前的热应。得知阿贝尔已回挪威后,四名法国科学院院士联名上书给挪威国王,要求寻找他,并建议国王将其调入皇家科学院工作。阿贝尔的命运眼看就要出现转机,但这一切来得太迟了。1829年4月6日,贫困交加的阿贝尔在挪威弗鲁兰病逝,年仅27岁。一代天才数学巨星过早病逝,这是整个数学界难以弥补的损失。

阿贝尔的人生虽然短暂,但他在许多方面都有建树。除了五次方程之外,阿贝尔还研究无穷级数和具有交换的伽罗瓦群方程。在研究无穷级数中,他得到的判别准则和幂级数求和的定理,推动了分析学严格化的进程。人们为了纪念他在这方面的贡献,称这种交换群称为“阿贝尔群”。他还是公认的椭圆函数论的奠基者。他把椭圆积分的反演引入了椭圆函数,并发现了椭圆函数加法定理、双周期性,并在此基础上证明出了阿贝尔定理。

阿贝尔在函数、方程领域所做的研究为数学的发展开拓了更为广阔的道路,并对数学的其他分支产生了深远的影响。著名数学家C.埃尔米特曾说:阿贝尔留下的思想可供数学家们工作150年。

2003年,为了纪念这位天才数学家诞辰200周年,挪威政府特设立了世界上奖金最高的数学奖——阿贝尔奖。阿贝尔的大名也因这个大奖更加为人们所熟知。

【基本信息】 姓名:陈景润 (1933—1996) 身高:米 国家或地区:中国 身份:数学家 功绩:哥德巴赫猜想第一人 曾系中国科学院院士 【具体信息】 ■简历: 1933年5月22日生于福建闽侯。家境贫寒,学习刻苦,他在中、小学读书时,就对数学情有独钟。一有时间就演算习题,在学校里成了个“小数学迷”。他不善言辞,为人真诚和善,从不计较个人得失,把毕生经历都献给了数学事业。高中没毕业就以同等学历考入厦门大学。1953年毕业于厦门大学数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。 ■主要成果: 1742年6月7日,德国数学家哥德巴赫提出一个未经证明的数学猜想“任何一个偶数均可表示两个素数之和”简称:“ 1+1”。这一猜想被称为“哥德巴赫猜想”。中国人运用新的方法,打开了“哥德巴赫猜想”的奥秘之门,摘取了此项桂冠,为世人所瞩目。这个人就是世界上攻克“哥德巴赫猜想”的第一个人——陈景润。 陈景润除攻克这一难题外,又把组合数学与现代经济管理、尖端技术和人类密切关系等方面进行了深入的研究和探讨。他先后在国内外报刊上发明了科学论文70余篇,并有《数学趣味谈》、《组合数学》等著作。 陈景润在解析数论的研究领域取得多项重大成果,曾获国家自然科学奖一等奖、何梁何利基金奖、华罗庚数学奖等多项奖励。他是第四、五、六届全国人民代表大会代表。著有《数学趣味谈》、《组合数学》等。 ■巨星的陨落 : 1984年4月27日,陈景润在横过马路时,被一辆急驶而来的自行车撞倒,后脑着地,酿成意外的重伤。雪上加霜,身体本来就不大好的陈景润,受到了几乎致命的创伤。他从医院里出来,苍白的脸上,有时泛着让人忧郁的青灰色,不久,终于诱发了帕金森氏综合症。 1996年3月19日,著名数学家陈景润因病长期住院,经抢救无效逝世,终年63岁。

偏微分方程论文参考文献

1 引言 偏微分方程诞生于18世纪,发展于19世纪,随着物理研究在深度和广度上的进展,微分方程在数量和类型上增加了,过去已知的方程如波动方程和位势方程也应用到新的物理领域了。偏微分方程变成数学的中心,一是因为在物理中应用广泛,二是因为偏微分方程的求解促进了函数论、变分法、级数展开、常微分方程、代数、微分几何等方面的发展,本章只能讨论其中的一小部分。 今天人们习惯按类型对偏微分方程分类,但19世纪初对偏微分方程的了解还不足以进行分类,由物理指导应讨论哪种方程,数学家则随意从一种类型的问题转向另一种,忽略了其中的差别(对今天来说是最基本的差别),毕竟物理从过去到现在都不关心数学家的分类。 2 热方程与傅里叶级数 傅里叶(Joseph Fourier,1768-1830)迈出了19世纪第一也是最重要的一步(还记得 18世纪偏微分方程 提到的欧拉、伯努利、达朗贝尔之争么)。傅里叶年轻时数学很好,但他想当士官,因为出身裁缝家庭,不让当,后来军校让他留校任教,他接受了,然后搞了一辈子数学。 当时流行搞热流动研究,这个研究有很多用途,比如冶炼金属等工业应用,以及确定地球内部温度、研究温度随时间变化等科研课题,1807年,傅里叶向巴黎科学院提交了一篇关于热传导的基本论文,被拉格朗日、拉普拉斯和勒让德评审拒绝了(感觉这仨人喜欢搞天体),不过科学院想鼓励他接着研究,宣布1812年给搞得好这个课题的发高额奖金,于是1811年傅里叶提交了修改过的论文,获得了奖金,但受到了缺乏严密性的批评,未能发表在当时科学院的《报告》里。傅里叶很生气,继续搞热学,在1822年发表了数学的经典文献《热的解析理论》(傅里叶思想的主要出处),把1811年论文的第一部分直接放进去了,两年后他成为科学院秘书,又把1811年论文原封不动地发表在《报告》中(傅里叶:莫欺中年穷ok?话说看了半天数学史难得有个人到中年出成果的,可能因此学界比较歧视中年人的智慧……)。 在吸放热的物体内部,温度分布一般是不均匀的,在任何点上都随时间变化,所以温度T是时间和空间的函数。函数的准确形式依赖于物体形状、密度、材料的比热、T的初始分布(t=0时的温度分布)以及物体表面的边界条件。傅里叶在书中考虑的第一个主要问题是在均匀和各向同性的物体内确定作为x,y,z,t函数的温度T, 根据物理原理T必须满足偏微分方程: ,称为三维空间的热方程,其中k^2是一个常数,其值依赖于物体的质料。傅里叶解决了特殊的热传导问题,对两端T保持在0度,侧面绝热因而无热流通过的柱轴,求解热方程,这根轴只涉及一维空间,即 ,边界条件T(0,t)=0,T(l,t)=0,t>0,初始条件T(x,0)=f(x),0

波动方程和退化波动方程 波动方程可能是最重要的一种偏微分方程,在三维空间的基本形式是 。18世纪已引入波动方程,并用球坐标表示了。19世纪发现了波动方程的新用途,特别是萌芽时期的弹性领域:包括各种形状的固体在不同的初始条件和边界条件下的振动,波在弹性体中的传播,以及声和光的传播问题。 变量可分离时,解波动方程的技巧类似傅里叶解热方程、或者拉梅用曲线坐标系表示位势方程。Mathieu用曲线坐标变量分离后解得波动方程是其中的典型。还有一类方法是把方程作为整体,第一个主要成果是关于论述初值问题的。泊松在1808-1819年间研究波动方程,得到了关于波u(x,y,z,t)的传播公式、 其中θ和Φ是普通球坐标,积分区域是以坐标为(x,y,z)的P点为中心,以at为半径的球Sat的表面。这个结果意味着,假如初始扰动是由边界为S的物体V发出,使Φ0和Φ1定义在V上,并在V外为0,那么初始扰动在V上被局部化了。这个公式告诉我们在V外任意点P(x,y,z)处波的传播情况,令d,D分别表示P到V上的点的最小距离和最大距离,当tD/a时,V在球Sat内部,初始扰动已经离开了P。波的前缘是中心在S,半径为at的一族球面的包络,区分了扰动已到达的点和尚未到达的点,波的后缘是一个曲面,区分了存在扰动的点和扰动已离开的点,由此可见在空间局部化的扰动在每一点P引起的效果仅持续有限时间。此外这个波有前缘和后缘,这个现象称为惠更斯原理。 黎曼在研究有限振幅声波传播时建立了解波动方程初值问题的另一个方法。他考虑如下二阶线性微分方程: 已知沿曲线Γ的u和u对法向的偏导数(即知道u对x,y的偏导数),要求在任意P点处的u。黎曼的方法是先找函数v(也称为黎曼函数或特征函数),使其满足共轭方程和其它条件。 在P点处黎曼引入x=ξ上的线段PP2和y=η上的线段PP1,将广义格林定理(二维情形)用于微分表示式L(u),最后得到任意点P处的u值: 黎曼方法把原来关于u的初值问题变成关于v的初值问题(变成较容易求的),黎曼在他研究的物理问题中很容易找到v,但v的存在性一般不是由黎曼证明的。这个方法仅适用于二元波动方程(双曲方程),不能直接推广,如果推广到二个以上独立变量,那么黎曼函数在积分区域边界上变为奇异,积分发散,难以处理。这个方法后来得到了推广,但同时增加了复杂性。 稳态问题也推进了用其它方法解波动方程的进展,产生了简化的波动方程。波动方程形式上包含时间变量,比如对于简单谐波,假设u=w(x,y,z)e^(ikt),代入波动方程则得到: ,称为退化波动方程或亥姆霍兹方程,表示所有调和的、声音的、弹性的、电磁学的波,别人找特殊积分就完事了,但亥姆霍兹(1821-1894)在研究一端开放管道内的空气振动时,给出了第一个关于这个方程解的普遍性结论。他关注传音问题,其中w是作谐振动气体的速度势,k是由空气弹性和振动频率确定的常数,λ是波长=2π/k,他用格林定理证明方程任一个在给定区域内的连续解可以表示为区域表面激发点的单层和双层效应,把e^(-ikr)/4πr作为格林定理中的一个函数,他得到区域内任一点P处的w: 19世纪的德国著名数学物理学家.基尔霍夫(Gustav Robert Kirchhoff,1824~1887)用亥姆霍兹的工作求得波动方程处置问题的另一个解,把上式改写为: 令Φ(t)为u在时刻r时边界上任一点(x,y,z)处的值,f(r)是u对法向n的偏导,基尔霍夫证明: 即在P处的u就用u和u对n的偏导在较早时刻围绕P点的闭曲面上的值表出,这个结果称为声学的惠更斯原理,是泊松公式的推广。 之前提到黎曼用了稍微广义的格林定理,用到共轭微分方程的格林定理的完全推广也称为格林定理,由杜·布瓦一雷蒙(Du Bois-Reymond,1831-1889)和达布(Darboux,1842-1917)分别提出,二者都引用了黎曼1858/1859的论文。给定方程: 得到广义的格林定理: ,其中重积分展布于R的内部,单积分展布于R的边界,并得到M(v)和P,Q的表达式。其中M(v)是L(u)的共轭表达式,M(v)=0是共轭微分方程。 格林定理可以求某些偏微分方程的解,例如椭圆型方程总能写成形如L(u)的形式,由此可得共轭微分方程M(v)=0,解v在任意点(ξ,η)像对数那样变为无穷,性态等同于v=Ulogr+V,r是点(ξ,η)到(x,y)的距离,U,V在所考虑的区域R内连续,且U为标准化的,即U(ξ,η)=1。把(ξ,η)包围在一个圆内并剔出积分区域,当圆收缩到(ξ,η)时有 解得函数v称为格林函数,当我们知道v,以及边界给定u和u对n的偏导,u就可以表示为单积分。常常把v在R的边界上为0的条件附加到格林函数的定义中,格林定理的用法已发展到各种特殊情形和各种推广。

中职数学椭圆研究论文

关于“0” (供你参考) 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 生活中的数学 有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。 ......................................................... 生活中的数学 摘要:本文通过对生活中商品促销的实例分析,得出数学其实与我们的生活息息相关,数学在现实生活中无处不在的结论。 关键词:数学;生活;促销 “对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。 2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。 去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了298元券买了一件藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。 我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。 广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。 商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在! 回答:2009-07-08 22:41

初一谢数学论文? 去骂你们老师去 你们老师脑子是不是被肛门夹过 还是自己懒的写叫铜血写。。。。。还是不要写了 写了对你也没屌用。。

课堂教学是学生在校期间学习文化科学知识的主阵地,也是对学生进行思想品德教育的主渠道。现在,学校实行五天制工作,带来了一定的压力。由于每堂课的时间的减少和每门课总学时的减少,确实给教师带来了很大的麻烦,给原来教熟了的老套路、老方法提出了挑战。对于减时不减量这一矛盾,除了对教材的内容进行重新修订调整外,对教师来说,最迫切的问题,就是如何提高四十分钟的课堂教学教育的效率,尽量在有限的时间里,出色地完成教学任务。 1 有明确的教学目标 布鲁姆在他的《教育目标分类学》一书中,将教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法、媒体,进行必要的内容重组。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。如《复数的引入》这一课是整个复数这一章的第一课,在备课时应注意,通过这一课的教学,使学生能利用辩证唯物主义的观点来解释复数的形成和发展,体会到矛盾是事物发展的动力,矛盾的解决推动着事物的发展。引伸到现实生活中,就是当我们遇到矛盾时,也要勇于面对矛盾,要有解决矛盾的决心和信心,促进矛盾的转化和解决,同时也就提高了自己分析问题和解决问题的能力。 2 能突出重点、化解难点 每一堂课都要有一个重点,而整堂的教学都是围绕着这个重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。如解析几何第二章的《椭圆》第一课时,其教学的重点是掌握椭圆的定义和标准方程,难点是椭圆方程的化简。教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆形台面的直观图、圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生对椭圆有一个直观的了解。为了强调椭圆的定义,教师事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解,尤其是上台板演的那两位的同学,更是终生难忘了。在进一步求轨迹方程时,学生容易得出这样一个结果:但化简却遇到了麻烦。这时教师可以适当提示:化简含有根号的式子时,我们通常有什么方法?学生回答:可以两边平方。教师问:是直接平方好呢还是恰当整理后再平方?学生通过实践,发现对于这个方程,直接平方不利于化简,而整理后再平方,最后能得到圆满的结果。这样,椭圆方程的化简这一难点也就迎刃而解了。同时也解决了将要遇到的求双曲线的标准方程时的化简问题。 3 要善于应用现代化教学手段 随着科学技术的飞速发展,三机一幕进入了寻常教室。对教师来说,掌握现代化的教学手段显得尤为重要和迫切。现代化教学手段,其显著的特点,一是能有效地增大每一堂课的课容量,从而把原来四十五分钟的内容在四十分钟中就加以解决;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性。四是有利于对整堂课所学内容进行回顾和小结。在课临近结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。对于有条件的学校,还可以自编电脑课件,借助电脑来生动形象地展示所教内容。如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用电脑来演示。 4 根据具体内容,选择恰当的教学方法 每一堂课都有每一堂课的教学任务,目标要求。教师能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识。而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度。这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。有时,在一堂课上,要同时使用多种教学方法。俗话说:“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。 5 对学生在课堂上的表现,要及时加以总结,适当给予鼓励 在教学过程中,教师要随时了解学生的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。 6 充分发挥学生为主体,教师为主导的作用,调动学生的学习积极性 学生是学习的主体,教师要围绕着学生展开教学,在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。 7 处理好课堂的偶发事件,及时调整课堂教学 尽管教师对每一堂课都作了充分的准备,但有时也可能遇到一些预料不到的事情。如一次我在讲授《复数的概念》第二课时时,有“两复数不全是实数时,不能比较大小”这一结论,但没有证明。教学计划中也没有证明的要求。在课间当带到这个问题的时,有一位成绩较好的学生要求我写出解答。我就因势利导,向学生介绍了数的大小比较的原则,并利用这一原则说明了“i>0”不能成立的原因。然后,话锋一转,对那位同学说,关于详细的证明的过程,我在课后再跟你面谈。这样,虽然增加了课时的内容,但也保护了学生的学习主动性和积极性,满足了学生的求知欲。 8 要精讲例题,多做课堂练习,腾出时间让学生多实践 根据课堂教学内容的要求,教师要精选例题,可以按照例题的难度、结构特征、思维方法等各个角度进行全面剖析,不片面追求例题的数量,而要重视例题的质量。解答过程视具体情况,可以由教师完完整整写出,也可部分写出,或者请学生写出。关键是讲解例题的时候,要能让学生也参与进去,而不是由教师一个人承包,对学生进行满堂灌。教师应腾出十来分钟时间,让学生做做练习或思考教师提出的问题,或解答学生的提问,以进一步强化本堂课的教学内容。若课堂内容相对轻松,也可以指导学生进行预习,提出适当的要求,为下一次课作准备。

在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度。用3个正四边形就可以铺满地面。 七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度。它不能铺满地面。 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面。 例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的。

  • 索引序列
  • 椭圆形偏微分方程论文研究步骤
  • 偏微分方程毕业论文
  • 椭圆积分毕业论文
  • 偏微分方程论文参考文献
  • 中职数学椭圆研究论文
  • 返回顶部