凯凯妞妞
眼视光行业从业人员资格认证的必要性调查报告【摘要】目的 调查不同人群对眼视光行业从业人员资格认证的必要性的看法。方法 采用问卷调查的形式对不同职业、不同年龄、不同学历人群共300人进行问卷调查。结果 目前眼视光从业人员资格认证还未完全规范。结论 眼视光学在维护视觉健康方面具有非常重要的作用,视光从业人员应进行专业规范化培训及职业资格认证,持证上岗,依法从业势在必行。【关键词】眼视光从业人员 资格认证 必要性人类对外界信息的获取主要依靠于视觉,眼睛收集到的信息占80%,然而,我们的视觉健康正在受到极大的威胁。据世界卫生组织(WHO)估计全世界有盲人4000万~5000万,低视力是盲人的3倍,为亿~亿,其中75%即约1亿多患者可通过手术及屈光矫正得以恢复或提高视力。我国盲人有500万,低视力有750万,在我国,老年低视力和儿童低视力二种人群不应忽视。我国个儿童中有87个为视力残疾,而在60—69岁的老年人中个人有400人为视力残疾,70—79岁为800人,80—89岁为人,而90岁或以上视力残疾可高达人,我国老年人视力残疾已是我们必须面临的十分严峻的挑战。我国每年出现新盲人45万,低视力135万。鉴于此1999年WHO提出“视觉2020,全球行动消灭可避免盲,享有看见的权利”的活动,我国是成员国之一。五种可避免盲分别为白内障、沙眼、河盲(只存在于某些非洲及少数拉美国家)儿童盲及低视力与屈光不正。按生活视力<~为标准,低视力的患病率为,从病因上看屈光不正占其中的,白内障占[1],屈光不正主要依靠于屈光矫正康复或提高视力,白内障患者术后很多也需要验光和屈光矫正来弥补手术未能解决的问题。可见眼视光学在低视力的康复和眼保健方面具有非常重要的作用。眼视光学在美国已发展成为一个独立医疗保健学科,眼视光从业人员有光学师,视光医师和眼科医师,光学师以眼测量和制作为主,无需医疗背景,视光医师、眼科工程师需经过8年的医科或视光专业教育,分别获得MD(医学博士)或OD(视光学博士),两者均需获得工程师资格和执照,视光工程师侧重眼保健工作,类似眼内科,眼科医师主要以手术为主,类似眼外科,在欧州,也大致如此[2]。我国是近视大国,近视占总人数的30%,其中青少年近视率在30—70%,但是由于历史等原因,传统的眼镜行业成为一个垄断,市场混乱,影响国民视觉健康。眼视光行业是否应持证上岗、依法从业成了热点,焦点问题。曲靖医学高等专科学校自2005年开始,率先在眼视光专业大力推行“双证培养”模式,特色、服务培训了初、中、高级验光员、磨镜工10批,在校的眼视光专业学生双证率达99%,使大批学生在实习时就持证顶岗、带薪实习,由于动手能力强基础扎实,毕业生供不应求,分布在上海、南京、广州等地,实现100%就业,营造出了学历文凭与职业资格证书“两件证书”制度并建的氛围。同时,用职业资格证书这个有力的手段,规范视光行业为培训质量提高了职业培训的影响力。目前,我们有深圳博士、天明、750、大全等多家视光行业多年与我们合作成为我们的实习基地,并招聘眼视光专业的毕业生,这与我们的“双证培养”是分不开的,眼视光行业职业资格认证已成为就业的真正“通行证”。云南省有眼视光相关企业200余家,我们从各视光中心、眼科、眼镜店,采用问卷调查,统计得出眼视光行业相关人员对眼视光执业资格认证的必要性及专业培训的需求:从眼视光从业人员的学历构成:硕士及以上学历,本科17%,专科80%,高中及同等学历;认为现在的眼视光职业培训及认证较规范,认为一般,认为不规范;60%认为对眼视光从业人员进行规范的职业培训及认证非常有必要,认为有必要,认为可培训也可不培训;50%认为规范的职业培训及认证对眼视光从业人员的职业发展非常重要,45%认为重要,5%认为一般;65%认为眼视光从业人员进行规范的职业培训及认证对更好的为诊疗对象服务有很大帮助,认为有帮助,认为可能有;认为规范的职业培训及认证对今后的发展非常重要,40%认为重要,认为一般;对规范的职业培训及认证的发展趋势非常有信心,60%有信心,持怀疑态度。云南省目前有两家高等医学院校开设了眼视光专业,有专科、本科二个层次。通过问卷调查,统计得出眼视光专业学生对规范的职业培训及认证的认识:15%的学生认为规范的职业培训及认证规范,35%认为一般,50%认为不规范;60%认为对眼视光从业人员进行规范的职业培训及认证非常有必要,40%认为有必要;55%认为规范的职业培训及认证对自己的职业发展非常重要,35%认为重要,10%认为一般;70%认为眼视光从业人员进行规范的职业培训及认证对更好的为诊疗对象服务有很大帮助,30%认为有帮助;65%表示一定会选择规范的职业培训及认证,35%表示应该会。同时,我们还对不同职业、不同年龄、不同学历层次的人群进行了调查。综上所述,眼视光学维护视觉健康方面具有非常重要的作用;但是目前眼视光从业人员资格认证还未完全规范,视光从业人员应进行专业规范化培训及职业资格认证,持证上岗,依法从业势在必行。党的十四届三中全会通过的《中共中央关于建设社会主义市场经济体制若干问题的决定》中提出在我国实行学历文凭和职业资种证书并建的制度。这是关系到我国劳动队伍整体素质的提高。关系到我国经济方式转变和增强国际竞争力的一项重大举措。2003年3月,劳动保障部颁布了6号部令,要求对技术复杂、量大面广、涉及人身安全、重大财产安全及广大消费者利益的职业,求职者未经培训、未取得相应的资格证书不得就业[3]。眼视光行业从业人员执业资格的认证制度是引导和规范职业培训的主要手段,要把培训引导到促进就业的方向上来。职业资格认证以职业活动为导向,以实际操作为主要依据,以第三方认证原则为基础。它的建立是以国家法律为依据,实行的是靠政府权威力推行的管理模式,是我国劳动人事制度的重要组成部分,大力推行眼视光行业职业资格认证制度,可全面提高眼视光行业素质,提高工作能力和就业能力。视光行业就业上岗是有一定的职业能力水平。可以说职业资格证书就是眼视光行业就业的“通行证”。参考文献[1] 孙葆忱.低视力学[M].北京:人民卫生出版社,2004.[2] 王光霁.视光学基础[M].北京:高等教育出版社,2005.[3] 劳动和社会保障部培训就业司、劳动和社会保障部职业技能鉴定中心组织编写. 全国职业技能鉴定管理与考评人员培训教材国家职业技能鉴定教程[M].北京:中国出版集团现代教育出版,2009.\
鲁鲁鲁德林
高分辨率光学显微术在生命科学中的应用【摘要】 提高光学显微镜分辨率的研究主要集中在两个方面进行,一是利用经典方法提高各种条件下的空间分辨率,如用于厚样品研究的SPIM技术,用于快速测量的SHG技术以及用于活细胞研究的MPM技术等。二是将最新的非线性技术与高数值孔径测量技术(如STED和SSIM技术)相结合。生物科学研究离不开超高分辨率显微术的技术支撑,人们迫切需要更新显微术来适应时代发展的要求。近年来研究表明,光学显微镜的分辨率已经成功突破200nm横向分辨率和400nm轴向分辨率的衍射极限。高分辨率乃至超高分辨率光学显微术的发展不仅在于技术本身的进步,而且它将会极大促进生物样品的研究,为亚细胞级和分子水平的研究提供新的手段。【关键词】 光学显微镜;高分辨率;非线性技术;纳米水平在生物学发展的历程中显微镜技术的作用至关重要,尤其是早期显微术领域的某些重要发现,直接促成了细胞生物学及其相关学科的突破性发展。对固定样品和活体样品的生物结构和过程的观察,使得光学显微镜成为绝大多数生命科学研究的必备仪器。随着生命科学的研究由整个物种发展到分子水平,显微镜的空间分辨率及鉴别精微细节的能力已经成为一个非常关键的技术问题。光学显微镜的发展史就是人类不断挑战分辨率极限的历史。在400~760nm的可见光范围内,显微镜的分辨极限大约是光波的半个波长,约为200nm,而最新取得的研究成果所能达到的极限值为20~30nm。本文主要从高分辨率三维显微术和高分辨率表面显微术两个方面,综述高分辨率光学显微镜的各种技术原理以及近年来在突破光的衍射极限方面所取得的研究进展。1 传统光学显微镜的分辨率光学显微镜图像的大小主要取决于光线的波长和显微镜物镜的有限尺寸。类似点源的物体在像空间的亮度分布称为光学系统的点扩散函数(point spread function, PSF)。因为光学系统的特点和发射光的性质决定了光学显微镜不是真正意义上的线性移不变系统,所以PSF通常在垂直于光轴的x-y平面上呈径向对称分布,但沿z光轴方向具有明显的扩展。由Rayleigh判据可知,两点间能够分辨的最小间距大约等于PSF的宽度。根据Rayleigh判据,传统光学显微镜的分辨率极限由以下公式表示[1]:横向分辨率(x-y平面):dx,y=■轴向分辨率(沿z光轴):dz=■可见,光学显微镜分辨率的提高受到光波波长λ和显微镜的数值孔径等因素的制约;PSF越窄,光学成像系统的分辨率就越高。为提高分辨率,可通过以下两个途径:(1)选择更短的波长;(2)为提高数值孔径, 用折射率很高的材料。Rayleigh判据是建立在传播波的假设上的,若能够探测非辐射场,就有可能突破Rayleigh判据关于衍射壁垒的限制。2 高分辨率三维显微术在提高光学显微镜分辨率的研究中,显微镜物镜的像差和色差校正具有非常重要的意义。从一般的透镜组合方式到利用光阑限制非近轴光线,从稳定消色差到复消色差再到超消色差,都明显提高了光学显微镜的成像质量。最近Kam等[2]和Booth等[3]应用自适应光学原理,在显微镜像差校正方面进行了相关研究。自适应光学系统由波前传感器、可变形透镜、计算机、控制硬件和特定的软件组成,用于连续测量显微镜系统的像差并进行自动校正。 一般可将现有的高分辨率三维显微术分为3类:共聚焦与去卷积显微术、干涉成像显微术和非线性显微术。 共聚焦显微术与去卷积显微术 解决厚的生物样品显微成像较为成熟的方法是使用共聚焦显微术(confocal microscopy) [4]和三维去卷积显微术(three-dimensional deconvolution microscopy, 3-DDM) [5],它们都能在无需制备样品物理切片的前提下,仅利用光学切片就获得样品的三维荧光显微图像。共聚焦显微术的主要特点是,通过应用探测针孔去除非共焦平面荧光目标产生的荧光来改善图像反差。共聚焦显微镜的PSF与常规显微镜的PSF呈平方关系,分辨率的改善约为■倍。为获得满意的图像,三维共聚焦技术常需使用高强度的激发光,从而导致染料漂白,对活生物样品产生光毒性。加之结构复杂、价格昂贵,从而使应用在一定程度上受到了限制。3-DDM采用软件方式处理整个光学切片序列,与共聚焦显微镜相比,该技术采用低强度激发光,减少了光漂白和光毒性,适合对活生物样品进行较长时间的研究。利用科学级冷却型CCD传感器同时探测焦平面与邻近离焦平面的光子,具有宽的动态范围和较长的可曝光时间,提高了光学效率和图像信噪比。3-DDM拓展了传统宽场荧光显微镜的应用领域受到生命科学领域的广泛关注[6]。 选择性平面照明显微术 针对较大的活生物样品对光的吸收和散射特性,Huisken[7]等开发了选择性平面照明显微术(selective plane illumination microscopy,SPIM)。与通常需要将样品切割并固定在载玻片上的方式不同,SPIM能在一种近似自然的状态下观察2~3mm的较大活生物样品。SPIM通过柱面透镜和薄型光学窗口形成超薄层光,移动样品获得超薄层照明下切片图像,还可通过可旋转载物台对样品以不同的观察角度扫描成像,从而实现高质量的三维图像重建。因为使用超薄层光,SPIM降低了光线对活生物样品造成的损伤,使完整的样品可继续存活生长,这是目前其他光学显微术无法实现的。SPIM技术的出现为观察较大活样品的瞬间生物现象提供了合适的显微工具,对于发育生物学研究和观察细胞的三维结构具有特别意义。 结构照明技术和干涉成像 当荧光显微镜以高数值孔径的物镜对较厚生物样品成像时,采用光学切片是一种获得高分辨3D数据的理想方法,包括共聚焦显微镜、3D去卷积显微镜和Nipkow 盘显微镜等。1997年由Neil等报道的基于结构照明的显微术,是一种利用常规荧光显微镜实现光学切片的新技术,并可获得与共聚焦显微镜一样的轴向分辨率。干涉成像技术在光学显微镜方面的应用1993年最早由Lanni等提出,随着I5M、HELM和4Pi显微镜技术的应用得到了进一步发展。与常规荧光显微镜所观察的荧光相比,干涉成像技术所记录的发射荧光携带了更高分辨率的信息。(1)结构照明技术:结合了特殊设计的硬件系统与软件系统,硬件包括内含栅格结构的滑板及其控制器,软件实现对硬件系统的控制和图像计算。为产生光学切片,利用CCD采集根据栅格线的不同位置所对应的原始投影图像,通过软件计算,获得不含非在焦平面杂散荧光的清晰图像,同时图像的反差和锐利度得到了明显改善。利用结构照明的光学切片技术,解决了2D和3D荧光成像中获得光学切片的非在焦平面杂散荧光的干扰、费时的重建以及长时间的计算等问题。结构照明技术的光学切片厚度可达,轴向分辨率较常规荧光显微镜提高2倍,3D成像速度较共聚焦显微镜提高3倍。(2)4Pi 显微镜:基于干涉原理的4Pi显微镜是共聚焦/双光子显微镜技术的扩展。4Pi显微镜在标本的前、后方各设置1个具有公共焦点的物镜,通过3种方式获得高分辨率的成像:①样品由两个波前产生的干涉光照明;②探测器探测2个发射波前产生的干涉光;③照明和探测波前均为干涉光。4Pi显微镜利用激光作为共聚焦模式中的照明光源,可以给出小于100nm的空间横向分辨率,轴向分辨率比共聚焦荧光显微镜技术提高4~7倍。利用4Pi显微镜技术,能够实现活细胞的超高分辨率成像。Egner等[8,9]利用多束平行光束和1个双光子装置,观测活细胞体内的线粒体和高尔基体等细胞器的精微细节。Carl[10]首次应用4Pi显微镜对哺乳动物HEK293细胞的细胞膜上离子通道类别进行了测量。研究表明,4Pi显微镜可用于对细胞膜结构纳米级分辨率的形态学研究。(3)成像干涉显微镜(image interference microscopy, I2M):使用2个高数值孔径的物镜以及光束分离器,收集相同焦平面上的荧光图像,并使它们在CCD平面上产生干涉。1996年Gustaffson等用这样的双物镜从两个侧面用非相干光源(如汞灯)照明样品,发明了I3M显微镜技术(incoherent, interference, illumination microscopy, I3M),并将它与I2M联合构成了I5M显微镜技术。测量过程中,通过逐层扫描共聚焦平面的样品获得一系列图像,再对数据适当去卷积,即可得到高分辨率的三维信息。I5M的分辨范围在100nm内。 非线性高分辨率显微术 非线性现象可用于检测极少量的荧光甚至是无标记物的样品。虽有的技术还处在物理实验室阶段,但与现有的三维显微镜技术融合具有极大的发展空间。(1)多光子激发显微术:(multiphoton excitation microscope,MPEM)是一种结合了共聚焦显微镜与多光子激发荧光技术的显微术,不但能够产生样品的高分辨率三维图像,而且基本解决了光漂白和光毒性问题。在多光子激发过程中,吸收几率是非线性的[11]。荧光由同时吸收的两个甚至3个光子产生,荧光强度与激发光强度的平方成比例。对于聚焦光束产生的对角锥形激光分布,只有在标本的中心多光子激发才能进行,具有固有的三维成像能力。通过吸收有害的短波激发能量,明显地降低对周围细胞和组织的损害,这一特点使得MPEM成为厚生物样品成像的有力手段。MPEM轴向分辨率高于共聚焦显微镜和3D去卷积荧光显微镜。(2)受激发射损耗显微术:Westphal[12]最近实现了Hell等在1994年前提出的受激发射损耗(stimulated emission depletion, STED)成像的有关概念。STED成像利用了荧光饱和与激发态荧光受激损耗的非线性关系。STED技术通过2个脉冲激光以确保样品中发射荧光的体积非常小。第1个激光作为激发光激发荧光分子;第2个激光照明样品,其波长可使发光物质的分子被激发后立即返回到基态,焦点光斑上那些受STED光损耗的荧光分子失去发射荧光光子的能力,而剩下的可发射荧光区被限制在小于衍射极限区域内,于是获得了一个小于衍射极限的光点。Hell等已获得了28nm的横向分辨率和33nm的轴向分辨率[12,13],且完全分开相距62nm的2个同类的分子。近来将STED和4Pi显微镜互补性地结合,已获得最低为28nm的轴向分辨率,还首次证明了免疫荧光蛋白图像的轴向分辨率可以达到50nm[14]。(3)饱和结构照明显微术:Heintzmann等[15]提出了与STED概念相反的饱和结构照明显微镜的理论设想,最近由Gustafsson等[16]成功地进行了测试。当光强度增加时,这些体积会变得非常小,小于任何PSF的宽度。使用该技术,已经达到小于50nm的分辨率。(4)二次谐波 (second harmonic generation, SHG)成像利用超快激光脉冲与介质相互作用产生的倍频相干辐射作为图像信号来源。SHG一般为非共振过程,光子在生物样品中只发生非线性散射不被吸收,故不会产生伴随的光化学过程,可减小对生物样品的损伤。SHG成像不需要进行染色,可避免使用染料带来的光毒性。因其对活生物样品无损测量或长时间动态观察显示出独特的应用价值,越来越受到生命科学研究领域的重视[17]。3 表面高分辨率显微术表面高分辨率显微术是指一些不能用于三维测量只适用于表面二维高分辨率测量的显微技术。主要包括近场扫描光学显微术、全内反射荧光显微术、表面等离子共振显微术等。 近场扫描光学显微术 近场扫描学光显微术(near-field scanning optical microscope, NSOM)是一种具有亚波长分辨率的光学显微镜。由于光源与样品的间距接近到纳米水平,因此分辨率由光探针口径和探针与样品之间的间距决定,而与光源的波长无关。NSOM的横向分辨率小于100nm,Lewis[18]则通过控制在一定针尖振动频率上采样,获得了小于10nm的分辨率。NSOM具有非常高的图像信噪比,能够进行每秒100帧图像的快速测量[19],NSOM已经在细胞膜上单个荧光团成像和波谱分析中获得应用。 全内反射荧光显微术 绿色荧光蛋白及其衍生物被发现后,全内反射荧光(total internal reflection fluorescence,TIRF)技术获得了更多的重视和应用。TIRF采用特有的样品光学照明装置可提供高轴向分辨率。当样品附着在离棱镜很近的盖玻片上,伴随着全内反射现象的出现,避免了光对生物样品的直接照明。但因为波动效应,有小部分的能量仍然会穿过玻片与液体介质的界面而照明样品,这些光线的亮度足以在近玻片约100nm的薄层形成1个光的隐失区,并且激发这一浅层内的荧光分子[20]。激发的荧光由物镜获取从而得到接近100nm的高轴向分辨率。TIRF近来与干涉照明技术结合应用在分子马达步态的动力学研究领域, 分辨率达到8nm,时间分辨率达到100μs[21]。 表面等离子共振 表面等离子共振(surface plasmon resonance, SPR) [22]是一种物理光学现象。当入射角以临界角入射到两种不同透明介质的界面时将发生全反射,且反射光强度在各个角度上都应相同,但若在介质表面镀上一层金属薄膜后,由于入射光被耦合入表面等离子体内可引起电子发生共振,从而导致反射光在一定角度内大大减弱,其中使反射光完全消失的角度称为共振角。共振角会随金属薄膜表面流过的液相的折射率而改变,折射率的改变又与结合在金属表面的生物分子质量成正比。表面折射率的细微变化可以通过测量涂层表面折射光线强度的改变而获得。1992年Fagerstan等用于生物特异相互作用分析以来,SPR技术在DNA-DNA生物特异相互作用分析检测、微生物细胞的监测、蛋白质折叠机制的研究,以及细菌毒素对糖脂受体亲和力和特异性的定量分析等方面已获得应用[23]。当SPR信息通过纳米级孔道[24]传递而提供一种卓越的光学性能时,将SPR技术与纳米结构设备相结合,该技术的深入研究将有可能发展出一种全新的成像原理显微镜。【参考文献】[1] 汤乐民,丁 斐.生物科学图像处理与分析[M].北京:科学出版社,2005:205.[2] Kam Z, Hanser B, Gustafsson MGL, et adaptive optics for live three-dimensional biological imaging[J]. Proc Natl Acad Sci USA,2001,98:3790-3795.[3] Booth MJ, Neil MAA, Juskaitis R, et al. Adaptive aberration correction in a confocal microscope[J]. Proc Natl Acad Sci USA,2002, 99:5788-5792.[4] Goldman RD,Spector cell imaging a laboratory manual[J].Gold Spring Harbor Laboratory Press,2005.[5] Monvel JB,Scarfone E,Calvez SL,et deconvolution for three-dimensional deep biological imaging[J].Biophys,2003,85:3991-4001.[6] 李栋栋,郭学彬,瞿安连.以三维荧光反卷
眼视光行业从业人员资格认证的必要性调查报告【摘要】目的 调查不同人群对眼视光行业从业人员资格认证的必要性的看法。方法 采用问卷调查的形式对不同职业、不同年龄、不
《模具工业》2001. No . 4 总 242 40激 光 加 工 技 术 在 模 具 制 造 中 的 应 用江苏理工大学(江苏镇江 212013) 张 莹
按着思路应用所学展开啊!光学仪器中常用的光学系统,一般都是由单透镜或胶合透镜等球面系统共轴构成的.对于由薄透镜组合成的球面系统,其物和像的位置可由高斯公式(1)
本科毕业论文是本科生在学业结束前必须完成的重要学术任务,它旨在检验学生的学科知识、研究能力和综合素质。以下是一些本科毕业论文写作方面的基本要求:1. 选题:选择
市场营销毕业论文的写作格式、流程与写作技巧 广义来说,凡属论述科学技术内容的作品,都称作科学著述,如原始论著(论文)、简报、综合报告、进展报告、文献综述、述评、
优质毕业论文问答知识库