如此娇弱
笛卡儿是从一个轨迹来寻找它的方程的,而费马则是从方程出发来研究轨迹的,这正是解析几何基本原则的两个相反的方面。 在1643年的一封信里,费马也谈到了他的解析几何思想。他谈到了柱面、椭圆抛物面、双叶双曲面和椭球面,指出:
唐伯兔吃小白兔
⑤辨析古人的数学观,促进学生数学观的形成学习立体几何时,让学生讨论欧几里得的数学观.学习解析几何时,让学生讨论笛卡儿的数学观与解析几何的诞生.⑶后测:一学年结束后,再对两个班统一测试和问卷调查(见附录一),结果如下:表3
奈奈fighting
过P和Q点做一条曲线,使得这曲线上所有过XO的垂直平面内的点的轨迹都具有这样的性质,即这条曲线上任意一点到S1和S2的距离之差为常数,根据解析几何我们知道,这曲线是一条双曲线。如果我们设想这一双曲线以直线XO
超级飞侠包警长
解析几何也很诱人:用坐标来表示点、用方程来表示曲线、通过方程来间接地研究曲线的几何特性。可是,用代数方法来分析几何问题遭到了卢梭的嘲笑。古代的哲学家中有人甚至认为世界图象一定是数学性的。
⑤辨析古人的数学观,促进学生数学观的形成学习立体几何时,让学生讨论欧几里得的数学观.学习解析几何时,让学生讨论笛卡儿的数学观与解析几何的诞生.⑶后测:一学年结束
17世纪,笛卡儿所创立的解析几何是数学史上极其杰出的成果,它使几何与代数得到完美的统一,充分揭示了数学的协调美和统一美。 18世纪,该世纪著名数学家欧拉的数学美
但是,数学家们经过研究,提出可以用我们习惯的欧式几何中的事实作一个直观“模型”来解释罗氏几何是正确的。 1868年,意大利数学家贝特拉米发表了一篇著名论文《
中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结
1、高等代数与解析几何课程整合的思考 2、线性代数教材内容与体系结构改革的思考与实践 3、关于空间解析几何中“矢量积”教学的探讨 4、解析几何最值问题探究 5、