首页 > 临床医学论文百科 > 关于人类遗传病论文题目

关于人类遗传病论文题目

发布时间:

关于人类遗传病论文题目

寂孟德尔和他的遗传理论 1965年夏天的一个傍晚,在捷克布林诺的摩拉维亚镇的一座教堂里,曾举行过一次盛大的纪念会。参加这次纪念会的大部分人并非教徒,而是应捷克科学院邀请而来的各国遗传学家。他们怀着崇敬而又惋惜的心情来纪念一位为遗传学奠定了基础,而其成果又被埋没35年之久的伟大生物学家。他就是格里戈.孟德尔神父。1965年是他的研究成果发表一百周年。 孟德尔其人 孟德尔(G.J.Mendel,1822-1884)出生于奥地利摩亚维亚的海因申多夫村。现今这个地方是捷克境内的海因西斯村。孟德尔的父亲是个农民,素性酷爱养花。因此,孟德尔自幼养成了养花弄草的兴趣。这也许是这位科学家后来在豌豆实验上成名的一个最初的契机吧。 孟德尔的童年不但平常,且有些寒苦。整个小学可以说是在半饥半饱中念完的。中学毕业后,主要靠妹妹准备作嫁妆的钱,读了欧缪兹学院的哲学系。大学毕业后,21岁的孟德尔在老师的建议下,进了设在鄂尔特伯伦的奥古斯丁派的修道院当了一名修士,取了一个教名叫格里戈。25年后被选为该修道院院长。 如果说童年的孟德尔是在贫寒中度过的,那么青年的孟德尔则饱历了生活道路的坎坷。孟德尔不满意于修道院的单调、古板的修士生活,兼任了布林诺一所实验学校代课教师的职务。他曾两次申请转为正式教师,但经考试的均名落孙山。特别令人气愤的是,在第二次考试中,主考官竟这样来评论他的考卷说:“这次的考卷使我们认为,该生连作为初等学校的老师也不够格”。在这期间他还到维也纳大学旁听了植物生理学、数学和物理学等课程。 好学勤奋和充满进取的孟德尔,考试落榜后,便在修道院的花园里从事植物杂交的研究工作。他的成果只发表了很小一部分。除了死后使他成名的《植物杂交实验》(1865)外,还有《人工授粉得到的山柳菊属的杂种》(1870)和《1870年10月13日的旋风》(1871)。 孟德尔的晚年,可说是在愁云惨雾中度过的。他孑身一个,无妻无子,孤苦令仃。又因拒绝缴纳当局对修道院征收的一笔税金,而遭受着与当局僵持之苦。学志未酬而又愤懑填膺的孟德尔,终于于1884年1月6日因患肾炎不治而与世长辞,享年只有62岁。当人们吊唁这位少年清贫,中年研究成果遭冷遇,晚年孤独悲惨的老人时,谁也未想到他是一位在科学史上留下峥嵘篇章的伟大科学家。 孟德尔的业绩 孟德尔开始研究植物杂交工作,所用的实验材料是豌豆。他选用了22个豌豆品种,按种子的外形是圆的还是皱的,子叶是黄的还是绿的……等特征。把豌豆分成了7对相对的性状。然后,按一对相对性状和两对相对性状,分别进行了杂交实验,得到了如下的一些结果。 一对相对性状的杂交实验孟德尔通过人工授粉使高茎豌豆跟矮茎豌豆互相杂交。第一代杂种(子1代)全是高茎的。他又通过自花授粉(自交)使子1代杂种产生后代,结果子2代的豌豆有3/4是高茎的,1/4是矮茎的,比例为3:1。孟德尔对所选的其它6对相对性状,也一一地进行了上述的实验,结果子2代都得到了性状分离3:1的比例。 两对相对性状的杂交实验孟德尔又用具有两对相对性状的豌豆作了杂交实验。结果发现,黄圆种子的豌豆同绿皱种子的豌豆杂交后,子1代都是黄圆种子;子1代自花授粉所生的子2代,出现4种类型种子。在556粒种子里,黄圆、绿圆、黄皱、绿皱种子之间的比例是9:3:3:1。 通过上述实验材料,孟德尔天才地推出了如下的遗传原理。 1.分离定律。孟德尔假定,高茎豌豆的茎所以是高的,是因为受一种高茎的遗传因子(DD)来控制。同样,矮茎豌豆的矮茎受一种矮茎遗传因子(dd)来控制。杂交后,子1代的因子是Dd。因为D为为性因子,d为隐性因子,故子1代都表现为高茎。子1代自交后,雌雄配子的D,d是随机组合的,因此子1代在理论上应有大体相同数量的4种结合型别:DD,Dd,dD,dd。由于显性隐性关系,于是形成了高、矮3:1的比例。孟德尔根据这些事实得出结论:不同遗传因子虽然在细胞里是互相结合的,但并不互相掺混,是各自独立可以互相分离的。后人把这一发现,称为分离定律。 2.自由组合定律。对于具 有两种相对性状的豌豆之间的杂交,也可以用上述原则来解释。如设黄圆种子的因子为YY和RR,绿皱种子的因子为yy和rr。两种配子杂交后,子1代为YyRr,因Y,R为显性,y,r为隐性,故子1代都表现为黄圆的。自交后它们的子2代就将有16个个体,9种因子型别。因有显性、隐性关系,外表上看有4种类型:黄圆、绿圆、黄皱、绿皱,其比例为9:3:3;1。根此孟德尔发现,植物在杂交中不同遗传因子的组合,遵从排列组合定律,后人把这一规律称为自由组合定律。 孟德尔的发现被埋没 孟德尔从1856年开始,经过8个的专心研究,得出了上述两上定律并写成一篇题为《植物杂交实验》的论文。在好友耐塞尔(一个气象学家)的鼓励的支援下,他于1865年2月8日和3月8日举行的布林诺学会自然科学研究会上,报告了这一论文。与会者很有兴致地听取了他的报告,但大概并不理解其中的内容。因为既没有人提问题,也没有人进行讨论。不过该会还是于1866年在自己的刊物《布林诺自然科学研究会会报》上全文发表了这篇论文。 曾一个时期,人们以为孟德尔的工作被埋没,是由于当时学术情报囿闭不通,交流不广,人们不知道他的工作造成的。后经调查,才知情况并非如此。原来该学会至少同120个协会或学会研究会有交流资料关系。刊载孟文的杂志,共寄出115本。其中,当地有关单位12本,柏林8本,维也纳6本,美国4本,英国2本(英国皇家学会和林耐学会)。孟德尔本人还往外寄送过该论文的抽印本。迄今有据可查的至少有5个人了解他的工作。第一个是耐格里。他是19世纪著名的植物学家。他的研究对解剖学、生理学、分类学和进化论的发展,有一定的推动作用。在植物学方面,他是心柳菊属方面的权威。孟德尔不仅把自己的论文寄给了他,且还给他写过进一步说明论文的长信。第二个是A.凯尔纳。他曾在因斯布罗克任教授,在维也纳植物园当主任。第三个是H.霍夫曼,一位植物学教授。第四个是威廉.奥尔勃斯.福克,他是植物杂交方面的权威。第五个是俄国的施马尔豪森。但是,刊物也好,论文也好,都如石沉大海,没有得到明显的反响。这样,孟德尔的为遗传学奠定了基础的、具有划时代意义的发现,竟被当代人们所忽视和遗忘,被埋没达35年之久。 1900年,对孟德尔盖棺后成名具有重要意义。这一年,有三人几乎同时重新作出了孟德尔那样的发现。第一个是德弗里期,他于1900年3月26日发表了同孟德尔的发现相的的论文;第二个人是科仑斯,收到他论文的时间是1900年4月24日;第三个人是丘歇马克,收到他论文的时间为1900胪6月20日。也就是在这一年里,他们也都发现了孟德尔的论文。这时,他们才清楚,原来自己的工作,早在35年前就由孟德尔做过了。 对孟德尔发现被埋没的原因分析 有不少生物史学家。对这一问题很感兴趣,也曾进行了一些调查。但因事情发生已年深日久,有确凿证据的材料所得无几,尤其关系到人们心理方面的活材料更难以到手。现据已有材料作如下分析: 历史的局限性 1866年孟德尔发表自己的论文时,正值达尔文的《物种起源》发表的第七个年头。这期间各国的生物学家,特别是著名生物学家都把兴趣转到了生物进化问题上,而物种杂交问题自然就不是人们瞩目的中心问题了。“这一事实也许对孟德尔的工作所遭到的命运,起到了更为决定性的作用”。其次,由于历史条件的限制,当时学术资料不能广泛地交 流也是一个原因。如,对杂交问题蒐集资料较多的达尔文,就没有看到过孟德尔的论文。虽然也有人说,即使达尔文看到了这一成果,也不一定能充分地认识到它的意义。但,这样推论是没有多大根据的。又如,了解孟德尔工作的俄国的施马尔豪森,他本来在自己学位论文的历史部分加了一个附注,正确地评价了孟德尔的工作。但遗憾的是,当1875年《植物区系》杂志发表他的论文译本时,删去了加有评价孟德尔工作的附注。这样,就又减少了后人了解孟德尔工作的机会。 怀疑以至完全不相信这是一项新发现孟德尔发表他的新发现时,当时只是一名普普通通的修士。至于他从事植物杂交的研究,只被人们看作“不过是为了消遣,他的理论不过是一个有魅力的懒汉的唠叨罢了”。的确,在一个专业学者的眼里,他还够不上一名地道的生物学家。因为他既没有生物学专业的学历,也没有博士、教授的头衔。因此,他的具有挑战性的发现,自然不易被人们所相信。从已知的少数几个看过他论文的人的反映和态度看,怀疑以至不相信孟德尔这个小人物能有什么新发现,乃是忽视他成果的一个和重要原因。当时了解孟德尔最多的是生物学家耐格里。孟德尔跟他素来关系甚密,相互交往达七年之久,孟德尔常同他交换种子。他也是读过孟文的第一个人。然而,正是由于他不仅没有正确地认识孟德尔的工作,而且还提出种种怀疑和责难,从而成为这桩遗憾后世的科学蒙难案的重要原因。现已查到,他看过孟德尔论文后,于1866年12月31日给孟德尔的覆信。从中可以确凿地看到他是怎样地怀疑、责难以至忽视了孟的工作。他在信中说:“我认为,你用豌豆属作的实验还远远没有完成,其实还只是个开端。……能为最重要的结论提出无可争辩的证明的这样一套试验,决不是已在着手进行了。……你打算在你的试验中包括其他植物,这是很好的,我相信,从其他品种中会得到完全不同的结果(就遗传性而言)”。他还怀疑孟德尔得出的3:1的规律。如他说:“你应当把数量的表现看作仅仅是经验的理象,因为它们还不能被证明是合理的”。在耐格里看来,“只有那些在最模糊的专业领域能够作出正确判断的人,才能探究这个问题”。另一个了解孟德尔工作的A.凯尔纳,接到孟德尔寄送的论文后,曾给孟德尔写过覆信。但据凯尔纳的助手说,孟德尔的论文在凯尔纳的图书室中压根就没有拆过封。人们是否可以推论:在凯尔纳的眼中,像孟德尔这样的小人物的文章,简直是不屑一顾的。 不理解其成果的重要意义 孟德尔的发现本身,在一定程度上超出了当时的流行观念。在当时,传统的遗传学观点是融合遗传理论,而孟德尔的思想则是粒子遗传;其次,当时在生物学领域主要的研究方法是定性的观察和实验,而孟德尔用的是定量的数学统计分析。所以,即使是认真地看过他的文章,如果跳不出传统框框,也不一定能理解其重要意义。如H.霍夫曼不仅看过他的文章,而且在自己的著作中,五处引用了孟德尔的文章,但现在看来,不是没有引到重要的地方,就是有所误解,总之,没有真正理解孟德尔工作的意义。所以,在霍夫曼的书中完全忽视了孟德尔的贡献。福克也曾多次提到孟德尔的成果,但他说:“孟德尔所作的很多次杂交的结果,十分类似于奈特的结果,但孟德尔自以为发现了各种杂种型别之间稳定的数量关系”。他所否定的正是孟德尔的成功之处,说明他根本不理解孟德尔发现的意义。他的提到孟德尔,不过是因为孟德尔培育成了植物杂种,不得不得一下而已。 教训和启示 埋没孟德尔发现一案,已经过去一百多年了。今天,孟德尔在科学史上的地位及其光辉业绩已被充分肯定,以他的成果为基础的遗传学也已取得辉煌胜利。然而,我们不应忘记,忽视孟德尔发现的代价是沉重的,它也许使生物学的发展延 缓了几十年。难道我们不应从中悟出应有的教训,找出以古鉴今的富有启发性的道理,以便今后不犯或少犯同类错误吗? 警惕传统观念的束缚 有些人认为孟德尔的发现是早产儿,它超越了时代的认识水平,因此被埋没是必然的。然而,我们却认为,孟德尔的发现不被理解从而导致被埋没,主要应归咎于传统观念的束缚。理由是,孟德尔的课题当时已经摆到了人拉的面前。至少有向个人的工作接近于孟德尔的结论(参阅斯多倍《遗传学史》,第126-138页,第189页),其中甚至包括人所共知的达尔文,他关于金鱼草的杂交实验距离孟德尔的结论只差一小步。这充分说明,孟德尔的发现决非偶然的早产儿,而是具备成熟的历史条件的。上述几个人和看过孟德尔论文的人,之所以没有作出孟德尔那样的结论和没有认识到其意义,主要因为他们没有冲破传统观念的束缚和跳出传统的定性方法的局面。而孟德尔的成功,正由于他的老框框少些,所以才有可能冲破当时的研究方法和流行的

怎样写生物小论文 1、 在中小学课外科技活动,对生物学科的某一专题是某一现象进行探索研究,把研究过程中枢观察纪录的资料,加工整理,综合分析,去会有共,并指出自己的观点。把上述的工作用文字系统全面的表达出来,这就是生物科学小论文。 2、 学生论文的特点 课题应具体,题目不应过大。因为基础知识薄弱,研究深度浅。生物科技小论文是学生进行生物科技活动的总结,这对扩大学生知识领域、培养能力、发展创造力,都有重要的实践意义。 完成生物小论文课题的方法 小论文课题确定后,怎样去完成研究课题呢?下面分别作些介绍。 (一) 考察法 即调查某一区域内的某些生物种类组成、数目和分布的规性等。如某的去昆虫种类及数目变化;环境宝物种的各种动物吹气候变化的调变,等等。 这种研究犯法化钱少,不需要复杂的仪器和装置一般的中小学都可进行。但指导教师事前应适当扑导,让学生与县长掌握一定的动物分类知识,并且事先订好固定的考察计划。 (二) 观察法:就是对某种动植物的个体进行仔细的观察,以了解掌握其生活习性和生长发育的规定性。佩观察的物件必须要有一定的数目,因为只对一个个体进行观察,其必然性的因素太大,回引响研究的结论。观察的同时,应随时注意收集实物资料,使证据更完全,效果更好。 (三) 实验法 在人物改变某个环境因素条件下(如营养、温度、光照等),观察在某一特定环境下,环境对生物产生的引响,找出其中的规定性的研究方法。注意点:1:要有对照组 2:研究的物件要有一定的数目。 例:"营养对青蛙蝌蚪发育的影响"。 实验时,分天然水和坦然谁加少是农家肥,两族作对照。试验过程中,除了营养条件不同外,其他条件如蝌蚪的来源、大小、水温、光照等都要尽权,一免其他因素影响了实验。 以上三种方法在实验研究中常有的,以那一中为止,以课题内容、性质而定。但不要用那种方法,都要引导学生进行仔细的观察,特别是在变化过程,要做好计数和测量,记录下来,然后用统计学得出正确的结论

哪方面的?我自由发挥了。。 现如今计算机技术应用越来越广泛,越来越多的人开始探讨人机互动(人类与计算机进行资讯互换)的可行性。英国雷丁大学的奇云·沃里克博士在自己的左臂植入100多块晶片以此来控制计算机,他还打算将晶片植入妻子脑中与妻子进行资讯交流,这项技术几乎使他获得了第六感。这项生物与计算机技术相结合的新兴技术迟早会有重大突破它将彻底改变我们的生活,我们的思维将通过无线网路与因特网相连,可以快速获取大量知识,计算机,手机也将被淘汰。其实这项技术并不年轻,之前有科学家在大脑完好的渐冻症患者体内神经中接入电极板,通过训练让他们用“意念”操控滑鼠以此与人交流。如果解决了蛋白质富集和产生大量自由基这些问题人机互动必将带给我们福音,人类医疗史上多数神经系统疾病也将被治愈。现在这项技术仍有许多路要走,在未来也许我们要解决的就是如何区分人类和智慧机器人了! 纯手打,也许不太严谨,高中不会强求吧。。。看我这么不容易求采纳。

可以

去猿题库会伐?实在不行,一遍过啊,高中必刷题啊等等有你做的了。

你确定600字就是论文了吗? 树干为什么是圆的 在观察大自然的过程中我偶然发现,树干的形态都近似圆的——空圆锥状。树干为什么是圆锥状的?圆锥状树干有哪些好处?为了探索这些问题,我进行了更深入的观察、分析研究。 在辅导老师的帮助下,我查阅了有关资料,了解到植物的茎有支援植物体、运输水分和其他养分的作用。树木的茎主要由维管束构成。茎的支援作用主要由木质部木纤维承担,虽然木本植物的茎会逐年加粗,但是在一定时间范围内,茎的木纤维数量是一定的,也就是树木茎的横截面面积一定。接着,我们围绕树干横截面面积一定,假设树干横截面长成不同形状,设计试验,探索树干呈圆锥状的原因和优点。 经过实验,我们发现:(1)横截面积和长度一定时,三棱柱状物体纵向支援力最大,横向承受力最小;圆柱状物体纵向支援力不如三棱柱状物体,但横向承受力最大;(2)等质量不同形状的树干,矮个圆锥体形树干承受风力最大;(3)风是一种自然现象,影响着树木横截面的形状和树木生长的高矮。近似圆锥状的树干,重心低,加上庞大根系和大地连在一起,重心降得更低,稳度更大;(4)树干横截面呈圆形,可以减少损伤,具有更强的机械强度,能经受住风的袭击。同时,受风力的影响,树干各处的弯曲程度相似,不管风力来自哪个方向,树干承受的阻力大小相似,树干不易受到破坏。 以上的实验反映了自然规律、自然界给我们启示:(1)横截面呈三角形的柱状物体,具有最大纵向支援力,其形态可用于建筑方面,例如角钢等;(2)横截面是圆形的圆状物体,具有最大的横向承受力,类似形态的建筑材料随处可见,如电视塔、电线杆等。 在我的观察、试验和分析过程中,逐渐解释、揭示了树干呈圆锥状的奥秘,增长了知识,把学到的知识联络实际加以应用,既巩固了学到的知识,又提高了学习的兴趣,还初步学会了科学观察和分析方法。

例: 数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

谈历史 - 我不敢说历史是什么,我只能说历史像什么。 历史像一条满满的海滩,古人是海滩的缔造者,而我们是一个个悠闲地过客,我们在历史的海滩上散步,又想拾起点什么 于是我们知道了秦前的战乱纷飞、群雄争霸;汉朝的文景之治、丝绸之路;盛唐的公主出嫁,歌舞升平;宋末的骨肉分离,词人思瘦;还有大元并不属于我们的莫斯科,我们的祖宗通过郑和下西洋将恩泽遍洒蓝色星球,我们还看到了史上最贵的一把火怎样烧掉天朝上国的尊严,烧毁半个中国的骄傲,烧痛我们后辈人的心,月光下破碎的斑驳是那些琉璃的泪吗? 我们就在这条海滩上一步一步的前行,拾起古人留给我们的记忆,岳飞、秦桧同样应该被记住,就像石头钻石同样硌脚。 人累了,天黑了,海滩却同样在那里,我不敢说明天也不敢信明天,但愿明天的海滩有更多下陷的足迹。 历史是一首唱不完的歌,大自然来作词,人类来谱曲,农民和领袖同样唱得出转音,只不过秦始皇转的大一点,陈胜转的小一点,五线谱写满了前辈们足够的功底,让他们一直从离骚唱到东方红,有花美的霓裳羽衣曲,也有悲凉的骊山怀古,还有黄河大合唱和雄壮的义勇军进行曲,每一个词都是历史的赐予,每一个音符都是感人的触控,在音乐的灵魂里我读出了历史的发展壮大,80后华人的历史不止只唱到R&B,中国人的历史是一首唱不完的歌,我不敢说明天也不敢信明天,但愿明天的歌谣可以让更多的人传唱。 历史不是谁写给谁看得而是谁来书写的,古人写下了万里长城,近现代人写下了万里长征,我们应该写下更多可以万年来辉煌,历史是伟大的。

就高中生物来说,遗传学部分属于有点困难,需要理科思维的部分。但高中学的遗传学也只是最基础的东西罢了

是啊 楼上说的对啊 你要哪方面的啊? 我记得我高中的时候主要做的是有丝分裂的观察

医学遗传学(medical genetics)是遗传学与临床医学相互渗透、紧密结合的一门综合性学科。医学遗传学以人体的疾病和异常性状为对象,研究疾病与遗传的关系及疾病的遗传方式、病因、发病机理、遗传预测、诊断、治疗和预防措施。 研究临床各种遗传病的诊断、产前诊断、预防、遗传咨询和治疗的学科称为临床遗传学(clinical genetics)。 医学遗传学不仅与生物学、生物化学、微生物及免疫学、病理学、药理学、组织胚胎学、卫生学等基础医学密切有关,而且已经渗入各临床学科之中。

关于人类遗传病论文的题目

医学遗传学(medical genetics)是遗传学与临床医学相互渗透、紧密结合的一门综合性学科。医学遗传学以人体的疾病和异常性状为对象,研究疾病与遗传的关系及疾病的遗传方式、病因、发病机理、遗传预测、诊断、治疗和预防措施。 研究临床各种遗传病的诊断、产前诊断、预防、遗传咨询和治疗的学科称为临床遗传学(clinical genetics)。 医学遗传学不仅与生物学、生物化学、微生物及免疫学、病理学、药理学、组织胚胎学、卫生学等基础医学密切有关,而且已经渗入各临床学科之中。

我是复制的,希望对楼主能有所帮助※ Multiplexing:一种同时采用多种样品的测序方法,能够大大提高测序速度。 ※ 突变(Mutation):DNA序列上任一种可以被遗传的变易。 ※ 核苷酸(Nucleotide):DNA和RNA的基本组成部分,通常包含一分子核糖,一分子磷酸和一分子碱基。多个核苷酸通过磷酸二酯键连接成一条链状。 ※ 细胞核(Nucleos):真核细胞中的一种细胞器,内含遗传物质。 癌基因(Oncogene):一种能够导致癌症的基因。许多致癌基因都直接或间接地控制细胞的成长速度。 ※ 噬菌体(phage):一种以细菌为宿主细胞的病毒。 ※ 物理图谱(Physics Map):物理图谱描绘DNA上可以识别的标记的位置和相互之间的距离(以碱基对的数目为衡量单位),这些可以识别的标记包括限制性内切酶的酶切位点,基因等。物理图谱不考虑两个标记共同遗传的概率等信息。对于人类基因组来说,最粗的物理图谱是染色体的条带染色模式,最精细的图谱是测出DNA的完整碱基序列。 ※ 质粒(Plasmid):质粒是细菌的染色体外能够自我复制的环状DNA分子。它能够和细胞核中的染色体明显地区别开来,而且并不是细胞生存的必要物质。一些质粒适宜于引入到宿主细胞中去,并利用宿主细胞的DNA大量繁殖,因此我们常常采用质粒作为外源DNA的载体,外源DNA借助于质粒在宿主细胞中大量繁殖。 ※ 多基因病(Polygenic Disorder):有多个基因位点共同决定的遗传病(如心脏病、糖尿病、一些癌症等)。这类疾病的遗传由多个基因位点共同控制,因而比单基因病的遗传更为复杂。 ※ 多聚酶链式反应(PCR):一种体外扩增DNA的方法。PCR使用一种耐热的多聚酶,以及两个含有20个碱基的单链引物。经过高温变性将模板DNA分离成两条链,低温退火使得引物和一条模板单链结合,然后是中温延伸,反应液的游离核苷酸紧接着引物从5‘端到3’端合成一条互补的新链。而新合成的DNA又可以继续进行上述循环,因此DNA的数目不断倍增。 ※ 多聚酶(Polymerase):多聚酶具有催化作用,能够加快游离的核苷酸和DNA模板结合形成新链的反应速度。 ※ 多态性(Polymorphism):多个个体之间DNA的差异称为多态性。DNA变异概率超过1%的变异,比较适宜作为绘制连接图谱的证据。 ※ 引物(Primer):预先制备的比较短的核苷酸链,在新链合成过程中作为引物,游离的核苷酸在引物之后按顺序和模板上的碱基结合,形成新链。 ※ 原核生物(Prokaryote):原核生物没有细胞膜,结构清晰的核以及其他细胞器。细菌是原核生物。 ※ 探针(Probe):是一条DNA单链或者一条RNA链,具有特定的序列,并且使用放射性元素或者免疫特性物质进行标记。探针和克隆库中的某条互补片段结合成一条双链结构,我们可以借助于探针的检测来获知与其互补的链的位置。 ※ 启动子(Promoter):DNA上的一个特定位点,RNA聚合酶在此和DNA结合,并由此开始转录过程。 ※ 蛋白质(Protein):一种由一条或者多条肽链构成的大分子。每条肽链上核苷酸的顺序是由基因外显子部分的碱基序列决定的。蛋白质是细胞、组织和器官的重要组成部分,每种蛋白质都具有特定的功能。酶、抗体和激素等都是蛋白质。 ※ 嘌呤(Purine):一种含氮的单环结构物。是核苷酸的重要组成部分,有腺嘌呤A和鸟嘌呤G两种。 ※ 嘧啶(Pyrimidine):一种含氮的双环结构,是核苷酸的重要组成部分。分为胞嘧啶C,胸腺嘧啶T和尿嘧啶U三种。 ※ 重组克隆(Recombinant Clone):将不同来源的DNA片段合成在一个DNA分子中,这种技术称为重组,得到的分子为重组克隆。 ※ DNA重组技术(Recombinant DNA Technology):在细胞体外将两个DNA片段连接成一个DNA分子的技术。在适宜的条件下,一个重组DNA分子能够被引入到宿主细胞中并在宿主细胞中大量繁殖。 ※ 调控序列(regulatory regions and sequence):一段控制基因表达的DNA片段。 ※ 限制性内切酶(Restriction enzyme, endonuclease):这种酶能够识别出DNA上特定的碱基序列,并在这个位点将DNA酶切。细菌中有400中限制性内切酶,能够识别出100中DNA序列。 ※ 酶切位点(Restriction Enzyme cutting site):DNA上一段碱基的特定序列,限制性内切酶能够识别出这个序列并在此将DNA酶切成两段。 ※ 限制性长度多态性(Restriction fragment length polymorphsm):从不同个体制备的DNA,使用同一种限制性内切酶酶切,切得的片段长度各不相同。酶切片段的长度可以作为物理图谱或者连接图谱中的标记子。通常是在酶切位点处发生突变而引发的。 ※ 核糖核酸RNA(Ribonucleic acid):从细胞的细胞核和细胞质部分分离出来的化学物质。在蛋白质合成和其他生化反应中起着重要作用,RNA的结构和DNA的结构类似,都是有核苷酸按照一定顺序排列成的长链。RNA可以分为信使RNA、转运RNA、核糖体RNA以及其他类型的RNA。 ※ 核糖体RNA(Ribonsomal RNA rRNA):存在于核糖体中的RNA。 ※ 核糖体(Ribonsome):细胞质中含有rRNA和相关蛋白质的细胞器,是蛋白质的合成场所。 序列位置标签(Sequence Tagged Site, STS):一段短的DNA序列(200-500个碱基对),这种序列在染色体上只出现一次,其位置和碱基顺序都是已知的。在PCR反应中可以检测处STS来,STS适宜于作为人类基因组的一种地标,据此可以判定DNA的方向和特定序列的相对位置。ETS是cDNA上的STS。 ※ 性染色体(Sex Chromosome):在人类细胞中是X或者Y染色体,性染色体决定了个体的性别。雌性细胞中含有两个X染色体,而雄性细胞中含有1个X染色体和1个Y染色体。 ※ 鸟枪法(Shotgun method):使用基因组中的随机产生的片段作为模板进行克隆的方法。 ※ 单基因病(Single Gene Disorder):一个基因的等位基因之间发生了突变造成的疾病。 ※ 体细胞(Somatic Cells):个体中除了生殖细胞及其母细胞之外的细胞,都是体细胞。 ※ 串联重复序列(Tandem repeat sequences):在染色体上一段序列的多次重复,称为串联重复序列。常用来作为物理图谱中的标记子。 ※ 端粒(Telomere):是染色体的末端部分,这一特殊结构区域对于线型染色体的结构和稳定起重要作用。 ※ 转录(Transcription):以某一DNA链为模板,按照碱基互补原则形成一条新的RNA链的过程,是基因表达的第一步。 ※ 转运RNA(tRNA):转运RNA具有特殊的结构,其一端包含3个特定的核苷酸序列,能和信使RNA上的密码子按照碱基配对原则进行结合。另一端则带有一个氨基酸。因此转运RNA能够同细胞质中游离的氨基酸结合并运到核糖体上,核糖体按mRNA上的遗传信息将氨基酸装配成蛋白质。 ※ 转化(Transformation):将外源DNA整合到某一细胞基因组中的过程。。 ※ 翻译(Translation):mRNA上携带的遗传信息指导蛋白质的合成过程,称为翻译。 ※ 病毒(Virus):一种不具备细胞结构的生物体。只能寄生在宿主细胞中才能生存。病毒一般包含核酸以及外壳蛋白,有些动物的病毒的外面也偶尔覆盖一层细胞膜。病毒进入宿主细胞之后,利用宿主的合成机制复制出大量的后代。。 ※ 酵母菌人工合成染色体(Yeast Artificial Chromosome):一种能够克隆长达400Kb的DNA片段的载体,含有酵母细胞中必需的端粒、着丝点和复制起始序列。 (卜东波、伍树明翻译整理) 生物信息名词 §§§ BLAST (Basic Local Alignment Search Tool),基本的基于局部对准的搜索工具;一种快速查找与给定序列具有连续相同片断的序列的技术。 §§§ Entrez 美国国家生物技术信息中心所提供的在线资源检索器。该资源将GenBank序列与其原始文献出处链接在一起。 §§§ NCBI 美国国立生物技术信息中心(National Center for Biotechnology Information),1988年设立,为美国国家医学图书馆(NLM)和国家健康协会(NIH)下属部门之一。提供生物医学领域的信息学服务,如世界三大核酸数据库之一的GenBank数据库,PubMed医学文献检索数据库等。 §§§ Conserved sequence 保守序列。演化过程中基本上不变的DNA中的碱基序列或蛋白质中的氨基酸序列。 §§§ Domain 功能域。蛋白质中具有某种特定功能的部分,它在序列上未必是连续的。某蛋白质中所有功能域组合其起来决定着该蛋白质的全部功能。 §§§ EBI 欧洲生物信息学研究所(European Bioinformatics Institute)。 The National Center for Biotechnology Information (NCBI) at the NationalLibrary of Medicine (NLM), National Institutes of Health (NIH) §§§ EMBL 欧洲分子生物学实验室(uropean Molecular Biology Laboratory)。 §§§ GenBank 由美国国家生物技术信息中心提供的核酸序列数据库。 §§§ Gene 基因。遗传的基本的物理和功能单位。一个基因就是位于某条染色体的某个位置上的核苷酸序列,其中蕴含着某种特定功能产物(如蛋白质或RNA分子)的编码。 §§§ DUST A program for filtering low complexity regions from nucleic acid sequences. §§§ Gene expression 基因表达。基因中的编码信息被转换成行使特定功能的结构产物的过程。 §§§ Gene family 基因家族。一组密切相关的编码相似产物的基因。 §§§ Gene mapping 基因作图。对DNA分子(染色体或质粒)中基因的相对位置和距离进行确定的过程。 §§§ Genetic code 遗传密码。以三联体密码子的形式编码于mRNA中的核苷酸序列,决定着所合成蛋白质中的氨基酸序列。 Genome 基因组。某一物种的一套完整染色体组中的所有遗传物质。其大小一般以其碱基对总数表示。 §§§ Genomics 基因组学。从事基因组的序列测定和表征描述,以及基因活性与细胞功能关系的研究。 §§§ HGMP 英国剑桥的人类基因组绘图计划(Human Genome Mapping Project)。 §§§ Informatics 信息学。研究计算机和统计学技术在信息处理中的应用的学科。在基因组计划中,信息学的内容包括快速搜索数据库方法的开发、DNA序列信息分析方法的开发和从DNA序列数据中预测蛋白质序列和结构方法的开发。 §§§ Physical map 物理图谱。不考虑遗传,DNA中可识别的界标(如限制性酶切位点和基因等)的位置图。界标之间的距离用碱基对度量。对人类基因组而言,最低分辨率的物理图谱是染色体上的条带图谱;最高分辨率的物理图谱是染色体中完整的核苷酸序列。 §§§ Promoter 启动子。DNA中被RNA聚合酶结合并从此起始转录的位点。 §§§ Proteome 蛋白质组。一个基因组的全部蛋白产物及其表达情况。 §§§ Regulatory region or sequence 调控区或调控序列。控制基因表达的DNA碱基序列。 §§§ Ribosomal RNA 核糖体RNA。简写为rRNA。是一组存在于核糖体中的RNA分子。 §§§ Sequence tagged site 序列示踪位点,简写为STS。在人类基因组中只出现一次的位置和序列已知的长约200到500bp的短DNA序列片断。由于可以通过PCR检测到,STS在将来源于许多不同实验室的基因图谱和测序数据进行定位和定向时非常有用,并且STS在人类基因组的物理图谱中也具有界标的作用。表达的序列标签(ESTs)就是那些得自cDNAs的STSs。 §§§ Single-gene disorder 单基因病。由单个基因的等位基因的突变所导致的遗传病(如杜兴肌营养不良和成视网膜细胞瘤等)。 §§§ UniGene 美国国家生物技术信息中心提供的公用数据库,该数据库将GenBank中属于同一条基因的所有片断拼接成完整的基因进行收录。 §§§ 非蛋白质编码区(“Junk”DNA)占据了人类基因组的大部分,研究表明“Junk”是许多对生命过程富有活力的不同类型的DNA的复合体,它们至少包括以下类型的DNA成份或由其表达的RNA成分:内含子(intron)、卫星(Satellite)DNA、小卫星(minisatellite)DNA、微卫星(microsatellite)DNA、非均一核RNA(hmRNA)、短散置元(short interspersed elements)、长散置元(long interspersed elements)、伪基因(pseudogenes)等。除此之外,顺式调控元件,如启动子、增强子等也属于非编码序列。 双重序列对比 两序列间的对比分析。最常见的方法为Needle-Wunsch方法。能够利用的软件如BLAST、FASTA等。 §§§ Autosome 常染色体。与性别决定无关的染色体,人双倍体染色体组含有46条染色体,其中22对常染色体,一对与性别决定有关的性染色体(X和Y染色体)。 sex chromosome. 包括序列(核酸与蛋白)搜索,结构比较,结构预测,蛋白质域,模体(Motif ),测序,发育与进化分析,双向电泳成像分析,质谱蛋白质鉴定,三维蛋白结构模建与成像,基因组图谱比较,基因预测,非编码区功能位点识别,基因组重叠群集装,后基因组功能分析,结构基因组学以及药物基因组学等等。 在,新版中启用了gapped BLAST、PSI-BLAST 和PHI-BLAST。gapped BLAST是比原BLAST 更灵敏更快的局部相似联配(俗称局部同源)搜索法;PSI- BLAST用迭代型的剖面打分算法,每次迭代所费时间与前者相同,它可检索弱同源的目标;PHI-BLAST 98年刚出台,是模体(Motif )构造与搜索软件,是更灵敏的同源搜索软件。例如线虫§§§ 的CED4是apoptosis 的调控蛋白,含有涉及磷酸结合的P 环模体,在各种ATP 酶和GTP 酶中可发现。在用gapped BLAST搜索NR数据库时,CED4仅跟人凋亡调控蛋白Apaf-1显著同源或相似(其中含有P-loop保守区)。但PHI- BLAST搜索,另有一个显著同源(E= )目标,是植物抗病蛋白Arabidopsis thaliana ,证实此动物与植物蛋白确实在apoptosis 中有相似的功能。另有,按PHI- BLAST搜索在MutL DNA修复蛋白中的ATP 酶域,II型拓扑异构酶,组氨酸激酶和HS90家族蛋白,发现一个新的真核蛋白族,共有HS90型ATP 酶域。再有在古核tRNA核苷酸转移酶中发现核苷酸转移酶域,在细菌DNA 引物酶的古核同源体中发现螺旋酶超家族II的模体VI。用以往的搜索法这些是得不到的。 深层事项: 后基因组时期的主要任务:Data mining ,即从完全测序的基因组中预测功能。 1 、序列、结构和功能 自分子生物学产生以来,均相信序列决定结构,结构决定功能。随着基因组学的发展,对此理解已有长足的深化。同源序列(具有共同祖先)未必具有相同的功能;相同功能未必源自同源序列。相异序列可能有相似的结构;序列与结构不相似的蛋白可能会有相似的功能。现在发现存在不相似(在序列与结构水平上)酶催化相同的生化反应。当然亦存在甚至结构水平上很相似的酶催化不同的生化反应。例如人与鼠的3?- 羟甾类脱氢酶,1AHH和1RAL;前者是Rossmann折叠,而后者是TIM-桶。肯定,这些相似酶不是共同祖先趋异的结果,而是不同祖先趋同的结果。如结构决定功能还是合理的,那么至少在功能活性位点具有相似结构特征(即3D- 功能模体)。属于今后研究的课题,对了解酶催化机制与功能蛋白的小分子模拟具有很大价值。 何谓功能?功能有层次的:表型的,细胞的和分子的。 目前开始高层功能预测,分子相互作用、代谢途径和调控网络。目前,已从结构基因组学,功能基因组学和蛋白质组学多种角度研究基因组功能。 2 、结构基因组学中的生物信息学 希望大通量地测定和模建完全测序基因组的全部蛋白三维结构。生物信息学可以发挥作用,一方面规划好测定的对象,另一方面可靠地模建结构。 3 、功能基因组学中的生物信息学 美国HGP 已编制1998-2003 的新五年计划。提出八项目标:其中目标7 特指生物信息学和计算生物学,其实几乎每项目标都要生物信息学,例如目标4 功能基因组学中的非编码区功能位点预测,基因表达分析(如DNA Chip)以及蛋白质全局分析(如蛋白质组学)。 §§§ 蛋 白 质 组 学(Proteomics) 1.蛋白质组学研究的目的和任务 20世纪中期以来,随着DNA双螺旋结构的提出和蛋白质空间结构的X射线解析,开始了分子生物学时代,对遗传信息载体DNA和生命功能的主要体现者蛋白质的研究,成为生命科学研究的主要内容。90年代初期,美国生物学家提出并实施了人类基因组计划,预计用15年的时间,30亿美元的资助,对人类基因组的全部DNA序列进行测定,希望在分子水平上破译人类所有的遗传信息,即测定大约30亿碱基对的DNA序列和识别其中所有的基因(基因组中转录表达的功能单位)。经过各国科学家8年多的努力,人类基因组计划已经取得了巨大的成绩,一些低等生物的DNA全序列已被阐明,人类3%左右DNA的序列也已测定,迄今已测定的表达序列标志(EST)已大体涵盖人类的所有基因。在这样的形势下,科学家们认为,生命科学已经入了后基因组时代。在后基因组时代,生物学家们的研究重心已经从解释生命的所有遗传信息转移到在整体水平上对生物功能的研究。这种转向的第一个标志就是产生了一门成为功能基因组学(Functional Genomics)的新学科。它采用一些新的技术,如SAGE、DNA芯片,对成千上万的基因表达进行分析和比较,力图从基因组整体水平上对基因的活动规律进行阐述。但是,由于生物功能的主要体现者是蛋白质,而蛋白质有其自身特有的活动规律,仅仅从基因的角度来研究是远远不够的。例如蛋白质的修饰加工、转运定位、结构变化、蛋白质与蛋白质的相互作用、蛋白质与其它生物分子的相互作用等活动,均无法在基因组水平上获知。正是因为基因组学(Genomics)有这样的局限性,于90年代中期,在人类基因组计划研究发展及功能基因组学的基础上,国际上萌发产生了一门在整体水平上研究细胞内蛋白质的组成及其活动规律的新兴学科——蛋白质组学(Proteomics),它以蛋白质组(Proteome)为研究对象。蛋白质组是指“由一个细胞或一个组织的基因组所表达的全部相应的蛋白质”。测定一个有机体的基因组所表达的全部蛋白质的设想,萌发在1975年双向凝胶电泳发明之时。1994年Williams正式提出了这个问题,而“蛋白质组”的名词则是由Wilkins创造的,发表在1995年7月的Electrophoresis杂志上。蛋白质组与基因组相对应,但二者又有根本不同之处:一个有机体只有一个确定的基因组,组成该有机体的所有不同细胞斗拱享用一个确定的基因组;而蛋白质组则是一个动态的概念,她不仅在同一个机体的不同组织和细胞中不同,在同一机体的不同发育阶段,在不同的生理状态下,乃至在不同的外界环境下都是不同的。正是这种复杂的基因表达模式,表现了各种复杂的生命活动,每一种生命运动形式,都是特定蛋白质群体在不同时间和空间出现,并发挥功能的不同组合的结果。基因DNA的序列并不能提供这些信息,再加上由于基因剪接,蛋白质翻译后修饰和蛋白质剪接,基因遗传信息的表现规律就更加复杂,不再是经典的一个基因一个蛋白的对应关系,一个基因可以表达的蛋白质数目可能远大于一。对细菌,可能为~;对酵母则为3;而对人,可高达10。后基因组和蛋白质组研究,是为阐明生命活动本质所不可缺少的基因组研究的远为复杂的后续部分,无疑将成为21世纪生命科学研究的主要任务。

下图是人类某一家族甲种遗传病和乙种遗传病的遗传系谱图(设甲遗传病与A和a所以甲病是有中生无,且母亲患病,儿子不患病,是属于常染色体显性遗传病。

关于人类遗传病论文

有些遗传病饮食可控制遗传学研究的迅速发展,不仅提示了许多遗传病的发病机理,而且对遗传病的预防和治疗也拟定出许多有效措施,使遗传病逐步变为“可治之症”,其中一部分可通过饮食调理来控制。蚕豆病,是由遗传性因素导致体内缺乏6-磷酸葡萄糖脱氢酶所致。故患者不能吃蚕豆及其制品,特别是新鲜的蚕豆,否则会引起急性溶血性贫血,严重时会危及生命。值得注意的是,具有6-磷酸葡萄糖脱氢酶缺陷的人,不仅可因吃蚕豆引起溶血性贫血,同时对某些药物,如伯氨喹啉、阿的平,以及磺胺、呋喃类和解热镇痛剂等药物过敏,用药时必须特别慎重。这类遗传病只要避开这些食物和药物,就不会发病。 苯丙酮尿症是由于患者肝脏内苯丙氨酸羟化酶缺乏,苯丙氨酸不能转化为酪氨酸,只能转变为苯丙酮酸,血中苯丙氨酸的浓度增高。患儿除了从小便中排出苯丙酮酸而称为苯丙酮尿症之外,主要是由于血中大量的苯丙氨酸使脑细胞的发育和功能受到影响导致智力低下。预防发病,只需尽早(出生后3个月内)采取限食疗法。婴儿确诊后饮食应以米粉及奶糕为主食,随着患儿年龄增长,可选用大米、小米、大白菜、土豆及菠菜等,如有条件,可给予特殊制备的低苯丙酸蛋白质食物。一般到8岁左右,饮食限制可适当放宽。半乳糖血症是患者体内由于缺乏葡萄糖-1-磷酸尿苷转移酶,致使患者不能利用半乳糖,所以不能喂人奶和牛奶。因为牛奶中含有乳糖,而乳糖分解后会产生半乳糖。血液中的半乳糖水平过高可能引起脑损伤、肝硬化、白内障,甚至造成死亡。但只要从出生之日起就停止进食乳类食物,改喂谷类或代奶粉等,坚持3年以上,就可以防止发病。肝豆状核变性,此病又称威尔森病,是一种常染色体隐性遗传的铜代谢障碍所引起的疾病。可分为以肝脏损害为主要症状的“肝型”患者和以神经症状为主要的“脑型”患者。因为该病是铜代谢障碍所致,故低铜饮食是治疗的有效措施之一。 此外,果糖不耐症患者需戒食含果糖的糖果和饮料。遗传性低血糖患者只要每天坚持少量多次吃糖就行。患有镰状细胞性贫血的人,当失水时,其细胞就会变成镰刀形,因此病人若每天坚持饮足够的水就有助于缓解症状。

医学遗传学论文

遗传学是研究生物体遗传和变异的科学,遗传学是生物学的重要分支和核心学科,并且是生命科学最具活力的领域之一。以下是我整理的医学遗传学论文,欢迎阅读。

1 医学遗传学课程特点

医学遗传学是医学与遗传学相结合的一门边缘学科,是遗传学知识在医学领域中的应用。它以生物、生化、病理、生理等学科的理论为基础,研究人类疾病的发生发展与遗传因素的关系,提供诊治、预防遗传病的科学依据及手段,从而改善人类健康素质。具有内容繁杂、实践性强、多学科交叉等特点。医学遗传学课程设置的内容存在递进关系、相辅相成,因此设置综合考试来考查学生对所学知识的综合运用能力是非常有必要的。

2 改革医学遗传学考试方式的必要性

传统教育理念与现代教育理念的一个重要区别是采取应试教育,还是素质教育。传统考试重识记轻能力, 往往局限于教材, 多以记忆性、上课重点为主。存在问题一是考试方式单一。二是“一考定终生”的弊端,不能客观反映每一位学生真实的学习的质量、效果和能力,带有某种投机性和偶然性,导致部分学生平时松,考前“临时抱佛脚”取得合格的分数,掩盖了教学中存在的问题,不利于教学质量的改进和提高。有些学生考试作弊,损害了考试的公平性,还对学习风气造成不良影响。另外学生考前心理负担过重,尤其是考前1 周, 学生不眠不休, 影响身心健康, 不利于创新型人才的培养。

医学遗传学已从单纯的理论型学科向理论与实践相结合的综合性学科发展,为培养复合型人才,必须探索一种更加系统、科学的考试方式,用于强化考试在教学过程中所起的评定、诊断作用,强化考试的检测功能和反馈功能,强化考试对师生的激励作用,从而培养学生的综合能力,激发学生的学习热情,避免重结果轻能力的倾向。

3 医学遗传学课程考试制度改革的主要思路

改革考试形式 在考核方法的选择上,采用灵活多样的考试方式,构成“形成性评价与终结性评价相结合”的考核与评价体系,即理论与实践相结合,技能与态度相结合,笔试、口试与操作相结合,开卷与闭卷相结合。因此将整个考试结构设置为:笔试(60%)、口试(15%)、操作(20%)、写作(5%)4个部分。

笔试包括章节性考试和期终考试的笔试成绩。教师可根据需要在某个章节学习结束后进行一次笔试测验,组成一个形成性考核的笔试成绩,这个成绩再与期终考试成绩结合起来,作为本部分成绩。

口试包括课堂提问、课堂表现、课堂纪律和课堂病例讨论的成绩。课堂提问反映学生自主学习的情况,能够检验课前预习、课堂学习、课后复习3 个方面的学习效果,易实施,操作性强,突出学习的过程,培养学生良好的.学习习惯,避免不良风气。课堂表现、课堂纪律反映学生的学习态度。课堂病例讨论, 主要讨论典型病例, 目的是让学生了解病例讨论的过程、步骤及如何运用所学知识分析问题、解决问题,以自由编组,随机抽题,口头回答的方式进行考核,有助于培养和提高学生的合作能力、参与能力、自主学习能力、自我管理能力和创新能力。

操作包括实训操作和实验报告的成绩。在整个实验课学习过程中,提供给每个学生实训操作机会,教师作为督导,从认真态度、严谨作风、职业素质、团队意识等方面进行考核,再根据完成实验报告的质量,评定每次实验成绩,取平均值作为此部分的成绩。

写作主要是指撰写小综述、小论文、翻译文献的成绩。初步培养学生的科研论文写作能力,从学生的自主态度、参与程度、完成质量、论文答辩水平等方面评定成绩。

转变教育思想观念 高等教育的目的是传授知识和培养学生的能力,由注重考核书本知识向注重学生知识、能力、素质综合考核转变;由笔试闭卷考试为主向灵活多样的考试方法转变;由重视一次性终结考试向注重全程性考核转变;传统教学以“传授知识为主”向现代教学以“培养能力为主”的转变,建立与之相适应的内容广泛、形式多样的考试考核制度。

鼓励学生参与思想政治教育讲解 教师结合学科特点和内容有意识、有目的、自觉地渗透爱国主义教育、职业道德教育、辩证唯物主义教育等思想政治教育。让学生在接受理论知识和提高技能的同时,养成良好高尚的道德风范。同时鼓励学生查找与本学科相关思想政治教育资料,在课堂上向大家讲解所受人生观、价值观的启迪。

注重考试内容的选择,提高学生综合素质 在考核内容的选择上,以“知识点上遵循教学大纲,但应用上不拘泥于教学大纲”为原则,在试题设计上,由注重知识向注重能力转变,增加应用题和能力题,考核应能充分反映学生掌握基本理论、基本技能的情况以及分析问题、解决问题和创新的能力,尽可能多一些综合性思考题、分析题、应用题,甚至没有标准答案的考试内容。考试内容应突出基础性、创新性和实践性。

调动教师积极性,促进教研活动 教师是考试模式改革的实施者,对考试改革的认识程度、对考试改革的积极性在考试改革过程中起着至关重要的作用。因此教师要不断更新教学内容、教学理念、教学方法、教学手段,付出更多的时间和精力开展教研活动,调动自身积极性。

总之,考试不仅是实施素质教育的内在要求, 也是推进素质教育实施的动力。构建多种形式的考试体系, 有利于对学生明确课程目标、巩固所学知识、检验学习效果、培养综合能力等方面具有积极作用, 有利于督促教师根据教学目标选择教学方法、调整教学内容, 强化学生的学习动机。

参 考 文 献

[1] 彭峰. 我国高校考试制度改革的若干思考.时代教育,2008,6:106107.

[2] 王海涛.改革高校考试模式,培养创新型人才.辽宁教育行政学院学报,2008,(11):162 163.

遗传学教学的几点体会论文

在学习、工作生活中,大家都接触过论文吧,论文是进行各个学术领域研究和描述学术研究成果的一种说理文章。那么你有了解过论文吗?下面是我为大家整理的遗传学教学的几点体会论文,希望对大家有所帮助。

生命科学中的遗传学,是与现代生物科学中多门课程有关联的专业基础课,同时又是一门方法技术精密的实验性课程,涉及生物学、微生物学等问题,同时又有细胞学、生物化学、发育学、生物统计学等问题,显微技术也是遗传学实验课教学的必需内容之一。在目前的新兴专业,例如生物技术、生物科学中,主要面临着教学任务重、课时少的问题。随着高校教育教学改革的进一步深入和素质教育的推进,课堂理论教学学时数正在不断压缩,已由最初的120学时减少到目前的54学时,甚至是48学时。所以学生普遍感觉到遗传学课程的教学内容多、时间紧、跨度大、难度大,是较难掌握的一门课程。如何提高其教学效果,值得探讨。

一、要讲好绪论课

绪论是第一节课,是教师与学生的第一次接触,教师的水平、性格、态度、语言、情感、衣着等都会给学生留下深刻的印象,这将有助于建立良好的师生关系,取得良好的教学效果。在绪论课上,可精选一些典型的遗传学学史事例,以及一些对遗传学的建立与发展作出过重要贡献的历史人物事迹,同时结合遗传学在当前医学、生物技术等领域的应用中所起的作用,展示其重要性,让学生在了解遗传学的建立与发展过程的同时,培养其学习兴趣。

二、采用多媒体教学,展示更多的研究信息

照片、视听媒体具有形象、动态、生动、直观的优势,学生对它有新鲜感。就心理而言,新鲜感会因时间推移而逐渐消退,其学习态度和行为也会随之发生微妙的变化;就教师而言,单纯利用视听媒体的优势向学生灌输知识信息,或依托媒体照本宣科,势必成为另一种形式的“满堂灌”;追求“直观”也不能限制学生想象、思考的空间而迟滞抽象思维的发展。因此在利用多媒体教学的过程中,应当把启发式教学的思想预先注入媒体的图像、视听造型及媒体的组合之中,确定启发式精讲与媒体的启发式展示相结合的教学策略。

三、对于不同的章节,应采取不同的授课方式

例如,对于遗传的三大定律、染色体数目及结构变异等不需要死记硬背的内容,可以通过鼓励学生多做习题或者上习题课的方法来掌握。在布置习题的过程中,应有针对性地选择一些典型的习题,而不是采取题海战术的方法。在批改学生作业的过程中,要发现学生的问题所在,通过习题的解析,使学生更好地掌握所学内容。

四、更新教学内容,激发学习兴趣

遗传学是一门古老的又不断发展的学科。所以在教学的过程中应不断注入新的内容。绝大部分大学生,在中学阶段都学习过一些遗传学的内容,例如孟德尔遗传、连锁遗传等,如果老师仍然照本宣科、娓娓道来的话,学生很可能会失去兴趣,觉得厌烦。许多的诺贝尔生理医学奖都与遗传学的发展有着紧密的关系,可以通过给学生讲解这些科研成果的方式,激起学生学习遗传学的兴趣。 学习兴趣是构成学习动机中最现实、最活跃的成分,对于提高学习效果、智力发展、创新能力培养及教育质量的全面提高有着巨大的作用。可以采取让学生自己讲授这些章节的方法进行教学,在学生备课和准备幻灯的过程中,将会对这些内容进行很好的复习。教师再根据学生在讲课过程中所出现的问题,有针对性、有重点地予以纠正。而对于新发展起来的基因组学、后基因组学、蛋白质组学、人类遗传疾病的遗传控制等内容,则比较容易引起学生学习的兴趣,可以结合分子生物学实验室的实验内容,更形象、更生动地为学生讲解。

五、精心准备遗传学的实验课

遗传学在农业、医学、环境污染治理、生物多样性的保护等方面具有重要作用,而实验教学是不可分割的重要部分。实验教学在育人方面有其独特作用,不仅可以授人以知识和技术,培养学生的动手能力与分析问题、解决问题的能力,而且能够影响人的世界观、正确的思维方法和严谨的工作作风。实验室是实验教学的主要场所,而实验教学又是培养有创新思维、创新能力人才的最佳途径。在遗传学课程的安排中,实验课占了1/3-1/4。实验课不仅能激发学生的求知欲,而且能加深学生对所学理论知识的理解,锻炼学生的实验操作技能,有助于提高学生观察、思维、分析和创新等方面的能力。

随着遗传学的发展,仅仅停留在以果蝇为材料的实验方法上,远远无法满足学生的需要。可以结合生物科学目前发展的趋势,为学生开展一些分子生物学的实验,例如DNA的提取、基因克隆、DNA测序、转基因等等,让学生对当前的实验技术有所了解。这不仅能够激起学生学习的兴趣,还有利于培养学生进一步在生物科学领域深造的欲望。

六、提高自己的语言表达水平

有人说教师的语言如钥匙,能打开学生心灵的窗户。好的教师语言是教师从事教育、教学工作必备的条件。教师语言水平的高低,直接影响到教学效果和教学质量的优劣。作为一个合格的人民教师,必须不断地提高自己的语言表达水平,尽量使自己的语言幽默诙谐。苏联作家斯维洛夫说:“教育家最主要的也是第一位的助手是幽默。”一个概念,讲授时有无幽默感,表达效果就不大一样。幽默能引起学生的兴趣,加深学生的理解和记忆。趣味性一般指教学语言生动形象、富于情趣。教学语言的趣味性也是教育教学成败的重要条件之一。

一个优秀的教师,不仅要有丰富系统的科学文化知识,懂得教育教学规律,还应该不断努力提高自己的教学语言修养,这样才能更好地完成教育教学任务。

遗传学作为生命科学本科阶段所要学习的一门基础的专业必修课程,遗传学课程建设情况、教学水平和研究水平, 是衡量生物学相关学科、专业整体水平的一个重要标准。因此, 加强遗传学课程的建设与教育教学创新, 是高校学科建设的重要内容。本文总结了我校在遗传学研究性教学示范课程建设方面的一些探索性工作,旨在与广大同行进行交流与探讨。

由于现代生物学的飞速发展,遗传学尤其是分子遗传学部分的内容更新很快,单纯依靠教科书乃至书本参考书,都会跟不上知识更新的速度;另外,遗传学的研究领域宽广,与众多学科交叉融合,形成了许多分支学科。因此,继续采用老师讲学生被动学的模式进行遗传学的教学已不能满足遗传学飞速发展的需要,在遗传学的教学中开展研究性教学势在必行。

研究性课程以其独特的创新品格和实践魅力,深受课程研制者和实践者所关注,成为二期课改的亮点,但同时它又是当前课改的难点。为搞好我校遗传学课程的研究性教学,我们进行了如下的探索:

一、对课程体系和教学内容进行整合和优化

遗传学是我校生命科学学院的主干课程,包括《遗传学》和《遗传学实验》两门独立课程,《遗传学》的教学课时数是54学时(3个学分),《遗传学实验》的课时是36学时(1个学分)。但是遗传学的教学内容几乎涉及到了遗传学科的方方面面,这就造成了知识容量大而课时少的矛盾;其次,随着学校教育体制的改革和办学方向的战略性调整,生命科学院由原来单纯的师范专业发展到现在的生物教育专业、生物技术专业、生物工程专业和海洋专业,同时还有国家理科基地;另外,遗传学的授课对象除了生命科学院的各专业学生外,还有中北学院和强化部的学生。由于各专业的培养目标有所侧重,学生的知识结构和专业基础差异较大。因此,遗传学的.教学工作面临着许多困难与挑战。

根据遗传学的学科特色和遗传学教学的实际需要,我们对国内外目前比较普遍使用的遗传学教材的内容体系进行了系统的比较和研究,对本校生物专业已修完遗传学课程的本科生和研究生进行了访谈,对中学的新课改,以及中学的生物学教学要求进行了调研,听取他们对高校遗传学教材体系构建和遗传学教学过程的建议和要求。在此基础上,我们编写了《遗传学》和《遗传学实验》两部教材,由科学出版社于2013年6月出版发行,这两部教材都被遴选为南京师范大学重点教材。

新编教材在保持现有教材风格和优点的基础上,通过全体编著人员的共同努力,形成了如下特色:

(一)凸显遗传学的学科特色,凡是在其他相关教材中应该阐述清楚的内容均不列入本教材,例如,细胞的结构、细胞分裂、DNA的结构、DNA的复制、转录和翻译的过程等。

(二)以基因为主线,按照基因概念的形成和发展的顺序,系统介绍基因的结构、功能、定位、重组、突变、基因工程和调控等核心内容。

(三)连锁与交换是整个遗传学的灵魂。本教材以最大的篇幅对连锁与交换的概念、连锁与交换规律、连锁与交换的证据、连锁与交换的意义、连锁遗传分析、连锁遗传图的绘制、真核生物的连锁与交换、细菌和噬菌体的连锁与交换、真菌的连锁与交换等内容进行了比较全面和系统的阐述。

(四)基因定位是研究基因功能和进行遗传操作的关键,本教材将其独立成章,对各种遗传标记和基因定位的常规技术和方法进行归纳和介绍,不仅使学生明确相关概念,同时了解各种基因定位方法。

(五)孟德尔定律是遗传学科的基石,但是由于当时理论和技术的局限,孟德尔的假说也存在许多缺陷,为了帮助学生系统学习孟德尔的遗传规律,同时将细胞遗传学与现代遗传学密切地联系在一起,在介绍孟德尔遗传规律之后,进一步对孟德尔的遗传规律进行了补充和发展。

(六)细胞遗传和分子遗传是遗传学科的两条主线,本教材对这两部分内容都进行了扩充。在细胞遗传学部分加入了“核型与核型分析”的内容,在分子遗传学部分加入了“基因组与基因组学”、“蛋白质组与蛋白质组学”和“生物信息学”等内容。

(七)我们学习和掌握遗传学知识的目的,除了开发和利用基因资源为人类服务之外,还应该加强遗传保护,减缓重要遗传资源衰退或灭绝的速度,保持遗传多样性。因此,在本教材中引入“保护遗传学”这一章,增强学生保护遗传资源的意识。

(八)《遗传学实验》教材的内容选择和实验安排紧扣《遗传学》教材的知识体系,实验内容涵盖细胞遗传、分子遗传、群体遗传、数量遗传、人类遗传、动物遗传、植物遗传、微生物遗传等不同领域,各个实验的取材方便,操作简洁,涉及的内容与日常生活息息相关。

二、将创造性和自主性学习的要求贯穿于整个教学过程中

在研究性教学中,教师不仅要传授知识,而且要遵循认知规律,以学生为中心,设计教学过程、提供教学资源、提供学习建议,对整个学习过程进行控制,关键环节上对学生进行启发、激励、引导和指导,并及时对学习效果进行评价,使学生从理解和接受式的被动学习转变为探索和研究式的自主学习。

为了激发学生学习热情和对遗传学科的学习兴趣,在每章开始之前都向学生提出一些前瞻性问题,让学生借助网络和学校数据资源进行预习,在课堂教学中对一些热点问题进行随堂讨论,在每章结束之后布置一些重点问题让学生进行探究,使学生的学习不再是死记硬背,而是主动地去进行探索。

三、精选实验内容,激发学生的学习兴趣和研究热情

遗传实验课程历史悠久,随着科技的进步和科学的发展,实验内容在不断地扩充、更新与深化,但是,在遗传史上的一些经典实验仍然需要保留,因为这些实验的原理和设计精髓对现代生物学研究仍然有着不可替代的科学意义。然而,遗传学实验课的学时数又很少,如何解决这个矛盾?在遗传学实验课程的教学中,我们主要进行了如下的探索:

(一)精选经典实验,培养创新能力

像果蝇的杂交这样的传统实验,它的实验原理和设计精髓对现代生物学研究仍然有着不可替代的科学意义,因此仍然需要保留,但是我们绝对不能像以前那样,让学生一步步地按照实验教材的步骤去操作、去验证,学生能够发挥创造性的机会很小,而且有些学生可能在中学就做过了这样的实验。为了克服传统实验的不足,培养学生的探究意识和创新能力,我们只给学生提供果蝇品系和研究目标,让学生自己去设计实验方案,在规定的时间内自己确定研究进程,最终将整个研究过程形成一个综合报告。经过几届学生的实践,我们发现效果非常好,学生可以选择不同的杂交方式、选择不同的基因去进行分析,既验证了相关的遗传理论,又发挥了自己的创造性。

(二) 注重综合性实验,强化操作能力

综合性实验教学是指实验内容涉及本课程的综合知识或与本课程相关的其它课程多个知识点的实验, 要求学生综合已学的知识来设计和操作实验。主要目标是培养学生的综合分析能力、实验动手能力、数据处理能力、查阅资料能力以及运用多学科知识解决问题的能力, 学会应用不同的方法和技术来完成预定的实验内容。在研究性遗传学实验示范课程的教学中,我们设计了多个综合性实验,例如, “人类基因组DNA 的检测与分析”实验,推荐学生用自己的指甲、口腔粘膜和毛囊作为材料,提取自己的基因组DNA,进行琼脂糖凝胶电泳,应用图像分析软件对照片上的图形进行测量,构建DNA的片段大小回归方程,并且根据回归方程计算出各未知DNA 的相对含量,比较和评价各种材料的实验结果。因为是对自己的DNA 进行分析,所以学生对实验的热情都很高。

四、培养学生科技文献获取和利用能力

遗传学的内容更新很快,单纯靠教科书和参考书,跟不上知识更新的速度,因此阅读科技文献成为获取最新学术进展的最佳方法。另外,每个学生将来走向工作岗位后,都可能从事一定的科研或教学活动,利用科技文献的机会是在所难免的。所以获取和利用科技文献的能力应在大学阶段得以充分培养。我们主要采取了如下措施:

(一)向学生介绍国内外的一些与遗传学相关的重要杂志名录、科技文献的检索方法、网络数据库及其使用方法等;

(二)要求学生完成1篇课程论文。教师只提出论文的写作和格式要求,但不拟定具体的题目,由学生根据自己的兴趣或最关注的问题自定选题,然后查阅文献,在课程结束之前,每个学生都必修提交1篇与遗传学相关的综述文章,并按照一定比例计入最终成绩。

(三)鼓励学生参与遗传学任课教师的课题,在老师指导下,积极申报江苏省和南京师范大学的大学生实践创新项目。在科研训练方面,已经取得了理想的成果,每位遗传学任课教师每年都指导由学生自动组成的课题组,成功申请了江苏省和南京师范大学的大学生实践创新项目,而且取得了很好的研究成果,已有多个课题组在国内权威期刊上发表了相关的研究论文。

总之,通过遗传学各任课教师的共同努力,我校的遗传学研究性示范教学工作取得了明显的成效,初步达到了创造性教与学的目的,教学质量有了进一步的提高,为进一步做好我校的遗传学教学工作、不断提高我校的遗传学教学质量奠定了良好基础。我校的遗传学研究性示范教学实践表明,高校的课程教学只有通过改革,紧跟社会和科学发展步伐,才能充满生机活力,获得教学双赢。

人类遗传病相关论文题目

寂孟德尔和他的遗传理论 1965年夏天的一个傍晚,在捷克布林诺的摩拉维亚镇的一座教堂里,曾举行过一次盛大的纪念会。参加这次纪念会的大部分人并非教徒,而是应捷克科学院邀请而来的各国遗传学家。他们怀着崇敬而又惋惜的心情来纪念一位为遗传学奠定了基础,而其成果又被埋没35年之久的伟大生物学家。他就是格里戈.孟德尔神父。1965年是他的研究成果发表一百周年。 孟德尔其人 孟德尔(G.J.Mendel,1822-1884)出生于奥地利摩亚维亚的海因申多夫村。现今这个地方是捷克境内的海因西斯村。孟德尔的父亲是个农民,素性酷爱养花。因此,孟德尔自幼养成了养花弄草的兴趣。这也许是这位科学家后来在豌豆实验上成名的一个最初的契机吧。 孟德尔的童年不但平常,且有些寒苦。整个小学可以说是在半饥半饱中念完的。中学毕业后,主要靠妹妹准备作嫁妆的钱,读了欧缪兹学院的哲学系。大学毕业后,21岁的孟德尔在老师的建议下,进了设在鄂尔特伯伦的奥古斯丁派的修道院当了一名修士,取了一个教名叫格里戈。25年后被选为该修道院院长。 如果说童年的孟德尔是在贫寒中度过的,那么青年的孟德尔则饱历了生活道路的坎坷。孟德尔不满意于修道院的单调、古板的修士生活,兼任了布林诺一所实验学校代课教师的职务。他曾两次申请转为正式教师,但经考试的均名落孙山。特别令人气愤的是,在第二次考试中,主考官竟这样来评论他的考卷说:“这次的考卷使我们认为,该生连作为初等学校的老师也不够格”。在这期间他还到维也纳大学旁听了植物生理学、数学和物理学等课程。 好学勤奋和充满进取的孟德尔,考试落榜后,便在修道院的花园里从事植物杂交的研究工作。他的成果只发表了很小一部分。除了死后使他成名的《植物杂交实验》(1865)外,还有《人工授粉得到的山柳菊属的杂种》(1870)和《1870年10月13日的旋风》(1871)。 孟德尔的晚年,可说是在愁云惨雾中度过的。他孑身一个,无妻无子,孤苦令仃。又因拒绝缴纳当局对修道院征收的一笔税金,而遭受着与当局僵持之苦。学志未酬而又愤懑填膺的孟德尔,终于于1884年1月6日因患肾炎不治而与世长辞,享年只有62岁。当人们吊唁这位少年清贫,中年研究成果遭冷遇,晚年孤独悲惨的老人时,谁也未想到他是一位在科学史上留下峥嵘篇章的伟大科学家。 孟德尔的业绩 孟德尔开始研究植物杂交工作,所用的实验材料是豌豆。他选用了22个豌豆品种,按种子的外形是圆的还是皱的,子叶是黄的还是绿的……等特征。把豌豆分成了7对相对的性状。然后,按一对相对性状和两对相对性状,分别进行了杂交实验,得到了如下的一些结果。 一对相对性状的杂交实验孟德尔通过人工授粉使高茎豌豆跟矮茎豌豆互相杂交。第一代杂种(子1代)全是高茎的。他又通过自花授粉(自交)使子1代杂种产生后代,结果子2代的豌豆有3/4是高茎的,1/4是矮茎的,比例为3:1。孟德尔对所选的其它6对相对性状,也一一地进行了上述的实验,结果子2代都得到了性状分离3:1的比例。 两对相对性状的杂交实验孟德尔又用具有两对相对性状的豌豆作了杂交实验。结果发现,黄圆种子的豌豆同绿皱种子的豌豆杂交后,子1代都是黄圆种子;子1代自花授粉所生的子2代,出现4种类型种子。在556粒种子里,黄圆、绿圆、黄皱、绿皱种子之间的比例是9:3:3:1。 通过上述实验材料,孟德尔天才地推出了如下的遗传原理。 1.分离定律。孟德尔假定,高茎豌豆的茎所以是高的,是因为受一种高茎的遗传因子(DD)来控制。同样,矮茎豌豆的矮茎受一种矮茎遗传因子(dd)来控制。杂交后,子1代的因子是Dd。因为D为为性因子,d为隐性因子,故子1代都表现为高茎。子1代自交后,雌雄配子的D,d是随机组合的,因此子1代在理论上应有大体相同数量的4种结合型别:DD,Dd,dD,dd。由于显性隐性关系,于是形成了高、矮3:1的比例。孟德尔根据这些事实得出结论:不同遗传因子虽然在细胞里是互相结合的,但并不互相掺混,是各自独立可以互相分离的。后人把这一发现,称为分离定律。 2.自由组合定律。对于具 有两种相对性状的豌豆之间的杂交,也可以用上述原则来解释。如设黄圆种子的因子为YY和RR,绿皱种子的因子为yy和rr。两种配子杂交后,子1代为YyRr,因Y,R为显性,y,r为隐性,故子1代都表现为黄圆的。自交后它们的子2代就将有16个个体,9种因子型别。因有显性、隐性关系,外表上看有4种类型:黄圆、绿圆、黄皱、绿皱,其比例为9:3:3;1。根此孟德尔发现,植物在杂交中不同遗传因子的组合,遵从排列组合定律,后人把这一规律称为自由组合定律。 孟德尔的发现被埋没 孟德尔从1856年开始,经过8个的专心研究,得出了上述两上定律并写成一篇题为《植物杂交实验》的论文。在好友耐塞尔(一个气象学家)的鼓励的支援下,他于1865年2月8日和3月8日举行的布林诺学会自然科学研究会上,报告了这一论文。与会者很有兴致地听取了他的报告,但大概并不理解其中的内容。因为既没有人提问题,也没有人进行讨论。不过该会还是于1866年在自己的刊物《布林诺自然科学研究会会报》上全文发表了这篇论文。 曾一个时期,人们以为孟德尔的工作被埋没,是由于当时学术情报囿闭不通,交流不广,人们不知道他的工作造成的。后经调查,才知情况并非如此。原来该学会至少同120个协会或学会研究会有交流资料关系。刊载孟文的杂志,共寄出115本。其中,当地有关单位12本,柏林8本,维也纳6本,美国4本,英国2本(英国皇家学会和林耐学会)。孟德尔本人还往外寄送过该论文的抽印本。迄今有据可查的至少有5个人了解他的工作。第一个是耐格里。他是19世纪著名的植物学家。他的研究对解剖学、生理学、分类学和进化论的发展,有一定的推动作用。在植物学方面,他是心柳菊属方面的权威。孟德尔不仅把自己的论文寄给了他,且还给他写过进一步说明论文的长信。第二个是A.凯尔纳。他曾在因斯布罗克任教授,在维也纳植物园当主任。第三个是H.霍夫曼,一位植物学教授。第四个是威廉.奥尔勃斯.福克,他是植物杂交方面的权威。第五个是俄国的施马尔豪森。但是,刊物也好,论文也好,都如石沉大海,没有得到明显的反响。这样,孟德尔的为遗传学奠定了基础的、具有划时代意义的发现,竟被当代人们所忽视和遗忘,被埋没达35年之久。 1900年,对孟德尔盖棺后成名具有重要意义。这一年,有三人几乎同时重新作出了孟德尔那样的发现。第一个是德弗里期,他于1900年3月26日发表了同孟德尔的发现相的的论文;第二个人是科仑斯,收到他论文的时间是1900年4月24日;第三个人是丘歇马克,收到他论文的时间为1900胪6月20日。也就是在这一年里,他们也都发现了孟德尔的论文。这时,他们才清楚,原来自己的工作,早在35年前就由孟德尔做过了。 对孟德尔发现被埋没的原因分析 有不少生物史学家。对这一问题很感兴趣,也曾进行了一些调查。但因事情发生已年深日久,有确凿证据的材料所得无几,尤其关系到人们心理方面的活材料更难以到手。现据已有材料作如下分析: 历史的局限性 1866年孟德尔发表自己的论文时,正值达尔文的《物种起源》发表的第七个年头。这期间各国的生物学家,特别是著名生物学家都把兴趣转到了生物进化问题上,而物种杂交问题自然就不是人们瞩目的中心问题了。“这一事实也许对孟德尔的工作所遭到的命运,起到了更为决定性的作用”。其次,由于历史条件的限制,当时学术资料不能广泛地交 流也是一个原因。如,对杂交问题蒐集资料较多的达尔文,就没有看到过孟德尔的论文。虽然也有人说,即使达尔文看到了这一成果,也不一定能充分地认识到它的意义。但,这样推论是没有多大根据的。又如,了解孟德尔工作的俄国的施马尔豪森,他本来在自己学位论文的历史部分加了一个附注,正确地评价了孟德尔的工作。但遗憾的是,当1875年《植物区系》杂志发表他的论文译本时,删去了加有评价孟德尔工作的附注。这样,就又减少了后人了解孟德尔工作的机会。 怀疑以至完全不相信这是一项新发现孟德尔发表他的新发现时,当时只是一名普普通通的修士。至于他从事植物杂交的研究,只被人们看作“不过是为了消遣,他的理论不过是一个有魅力的懒汉的唠叨罢了”。的确,在一个专业学者的眼里,他还够不上一名地道的生物学家。因为他既没有生物学专业的学历,也没有博士、教授的头衔。因此,他的具有挑战性的发现,自然不易被人们所相信。从已知的少数几个看过他论文的人的反映和态度看,怀疑以至不相信孟德尔这个小人物能有什么新发现,乃是忽视他成果的一个和重要原因。当时了解孟德尔最多的是生物学家耐格里。孟德尔跟他素来关系甚密,相互交往达七年之久,孟德尔常同他交换种子。他也是读过孟文的第一个人。然而,正是由于他不仅没有正确地认识孟德尔的工作,而且还提出种种怀疑和责难,从而成为这桩遗憾后世的科学蒙难案的重要原因。现已查到,他看过孟德尔论文后,于1866年12月31日给孟德尔的覆信。从中可以确凿地看到他是怎样地怀疑、责难以至忽视了孟的工作。他在信中说:“我认为,你用豌豆属作的实验还远远没有完成,其实还只是个开端。……能为最重要的结论提出无可争辩的证明的这样一套试验,决不是已在着手进行了。……你打算在你的试验中包括其他植物,这是很好的,我相信,从其他品种中会得到完全不同的结果(就遗传性而言)”。他还怀疑孟德尔得出的3:1的规律。如他说:“你应当把数量的表现看作仅仅是经验的理象,因为它们还不能被证明是合理的”。在耐格里看来,“只有那些在最模糊的专业领域能够作出正确判断的人,才能探究这个问题”。另一个了解孟德尔工作的A.凯尔纳,接到孟德尔寄送的论文后,曾给孟德尔写过覆信。但据凯尔纳的助手说,孟德尔的论文在凯尔纳的图书室中压根就没有拆过封。人们是否可以推论:在凯尔纳的眼中,像孟德尔这样的小人物的文章,简直是不屑一顾的。 不理解其成果的重要意义 孟德尔的发现本身,在一定程度上超出了当时的流行观念。在当时,传统的遗传学观点是融合遗传理论,而孟德尔的思想则是粒子遗传;其次,当时在生物学领域主要的研究方法是定性的观察和实验,而孟德尔用的是定量的数学统计分析。所以,即使是认真地看过他的文章,如果跳不出传统框框,也不一定能理解其重要意义。如H.霍夫曼不仅看过他的文章,而且在自己的著作中,五处引用了孟德尔的文章,但现在看来,不是没有引到重要的地方,就是有所误解,总之,没有真正理解孟德尔工作的意义。所以,在霍夫曼的书中完全忽视了孟德尔的贡献。福克也曾多次提到孟德尔的成果,但他说:“孟德尔所作的很多次杂交的结果,十分类似于奈特的结果,但孟德尔自以为发现了各种杂种型别之间稳定的数量关系”。他所否定的正是孟德尔的成功之处,说明他根本不理解孟德尔发现的意义。他的提到孟德尔,不过是因为孟德尔培育成了植物杂种,不得不得一下而已。 教训和启示 埋没孟德尔发现一案,已经过去一百多年了。今天,孟德尔在科学史上的地位及其光辉业绩已被充分肯定,以他的成果为基础的遗传学也已取得辉煌胜利。然而,我们不应忘记,忽视孟德尔发现的代价是沉重的,它也许使生物学的发展延 缓了几十年。难道我们不应从中悟出应有的教训,找出以古鉴今的富有启发性的道理,以便今后不犯或少犯同类错误吗? 警惕传统观念的束缚 有些人认为孟德尔的发现是早产儿,它超越了时代的认识水平,因此被埋没是必然的。然而,我们却认为,孟德尔的发现不被理解从而导致被埋没,主要应归咎于传统观念的束缚。理由是,孟德尔的课题当时已经摆到了人拉的面前。至少有向个人的工作接近于孟德尔的结论(参阅斯多倍《遗传学史》,第126-138页,第189页),其中甚至包括人所共知的达尔文,他关于金鱼草的杂交实验距离孟德尔的结论只差一小步。这充分说明,孟德尔的发现决非偶然的早产儿,而是具备成熟的历史条件的。上述几个人和看过孟德尔论文的人,之所以没有作出孟德尔那样的结论和没有认识到其意义,主要因为他们没有冲破传统观念的束缚和跳出传统的定性方法的局面。而孟德尔的成功,正由于他的老框框少些,所以才有可能冲破当时的研究方法和流行的

怎样写生物小论文 1、 在中小学课外科技活动,对生物学科的某一专题是某一现象进行探索研究,把研究过程中枢观察纪录的资料,加工整理,综合分析,去会有共,并指出自己的观点。把上述的工作用文字系统全面的表达出来,这就是生物科学小论文。 2、 学生论文的特点 课题应具体,题目不应过大。因为基础知识薄弱,研究深度浅。生物科技小论文是学生进行生物科技活动的总结,这对扩大学生知识领域、培养能力、发展创造力,都有重要的实践意义。 完成生物小论文课题的方法 小论文课题确定后,怎样去完成研究课题呢?下面分别作些介绍。 (一) 考察法 即调查某一区域内的某些生物种类组成、数目和分布的规性等。如某的去昆虫种类及数目变化;环境宝物种的各种动物吹气候变化的调变,等等。 这种研究犯法化钱少,不需要复杂的仪器和装置一般的中小学都可进行。但指导教师事前应适当扑导,让学生与县长掌握一定的动物分类知识,并且事先订好固定的考察计划。 (二) 观察法:就是对某种动植物的个体进行仔细的观察,以了解掌握其生活习性和生长发育的规定性。佩观察的物件必须要有一定的数目,因为只对一个个体进行观察,其必然性的因素太大,回引响研究的结论。观察的同时,应随时注意收集实物资料,使证据更完全,效果更好。 (三) 实验法 在人物改变某个环境因素条件下(如营养、温度、光照等),观察在某一特定环境下,环境对生物产生的引响,找出其中的规定性的研究方法。注意点:1:要有对照组 2:研究的物件要有一定的数目。 例:"营养对青蛙蝌蚪发育的影响"。 实验时,分天然水和坦然谁加少是农家肥,两族作对照。试验过程中,除了营养条件不同外,其他条件如蝌蚪的来源、大小、水温、光照等都要尽权,一免其他因素影响了实验。 以上三种方法在实验研究中常有的,以那一中为止,以课题内容、性质而定。但不要用那种方法,都要引导学生进行仔细的观察,特别是在变化过程,要做好计数和测量,记录下来,然后用统计学得出正确的结论

哪方面的?我自由发挥了。。 现如今计算机技术应用越来越广泛,越来越多的人开始探讨人机互动(人类与计算机进行资讯互换)的可行性。英国雷丁大学的奇云·沃里克博士在自己的左臂植入100多块晶片以此来控制计算机,他还打算将晶片植入妻子脑中与妻子进行资讯交流,这项技术几乎使他获得了第六感。这项生物与计算机技术相结合的新兴技术迟早会有重大突破它将彻底改变我们的生活,我们的思维将通过无线网路与因特网相连,可以快速获取大量知识,计算机,手机也将被淘汰。其实这项技术并不年轻,之前有科学家在大脑完好的渐冻症患者体内神经中接入电极板,通过训练让他们用“意念”操控滑鼠以此与人交流。如果解决了蛋白质富集和产生大量自由基这些问题人机互动必将带给我们福音,人类医疗史上多数神经系统疾病也将被治愈。现在这项技术仍有许多路要走,在未来也许我们要解决的就是如何区分人类和智慧机器人了! 纯手打,也许不太严谨,高中不会强求吧。。。看我这么不容易求采纳。

可以

去猿题库会伐?实在不行,一遍过啊,高中必刷题啊等等有你做的了。

你确定600字就是论文了吗? 树干为什么是圆的 在观察大自然的过程中我偶然发现,树干的形态都近似圆的——空圆锥状。树干为什么是圆锥状的?圆锥状树干有哪些好处?为了探索这些问题,我进行了更深入的观察、分析研究。 在辅导老师的帮助下,我查阅了有关资料,了解到植物的茎有支援植物体、运输水分和其他养分的作用。树木的茎主要由维管束构成。茎的支援作用主要由木质部木纤维承担,虽然木本植物的茎会逐年加粗,但是在一定时间范围内,茎的木纤维数量是一定的,也就是树木茎的横截面面积一定。接着,我们围绕树干横截面面积一定,假设树干横截面长成不同形状,设计试验,探索树干呈圆锥状的原因和优点。 经过实验,我们发现:(1)横截面积和长度一定时,三棱柱状物体纵向支援力最大,横向承受力最小;圆柱状物体纵向支援力不如三棱柱状物体,但横向承受力最大;(2)等质量不同形状的树干,矮个圆锥体形树干承受风力最大;(3)风是一种自然现象,影响着树木横截面的形状和树木生长的高矮。近似圆锥状的树干,重心低,加上庞大根系和大地连在一起,重心降得更低,稳度更大;(4)树干横截面呈圆形,可以减少损伤,具有更强的机械强度,能经受住风的袭击。同时,受风力的影响,树干各处的弯曲程度相似,不管风力来自哪个方向,树干承受的阻力大小相似,树干不易受到破坏。 以上的实验反映了自然规律、自然界给我们启示:(1)横截面呈三角形的柱状物体,具有最大纵向支援力,其形态可用于建筑方面,例如角钢等;(2)横截面是圆形的圆状物体,具有最大的横向承受力,类似形态的建筑材料随处可见,如电视塔、电线杆等。 在我的观察、试验和分析过程中,逐渐解释、揭示了树干呈圆锥状的奥秘,增长了知识,把学到的知识联络实际加以应用,既巩固了学到的知识,又提高了学习的兴趣,还初步学会了科学观察和分析方法。

例: 数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

谈历史 - 我不敢说历史是什么,我只能说历史像什么。 历史像一条满满的海滩,古人是海滩的缔造者,而我们是一个个悠闲地过客,我们在历史的海滩上散步,又想拾起点什么 于是我们知道了秦前的战乱纷飞、群雄争霸;汉朝的文景之治、丝绸之路;盛唐的公主出嫁,歌舞升平;宋末的骨肉分离,词人思瘦;还有大元并不属于我们的莫斯科,我们的祖宗通过郑和下西洋将恩泽遍洒蓝色星球,我们还看到了史上最贵的一把火怎样烧掉天朝上国的尊严,烧毁半个中国的骄傲,烧痛我们后辈人的心,月光下破碎的斑驳是那些琉璃的泪吗? 我们就在这条海滩上一步一步的前行,拾起古人留给我们的记忆,岳飞、秦桧同样应该被记住,就像石头钻石同样硌脚。 人累了,天黑了,海滩却同样在那里,我不敢说明天也不敢信明天,但愿明天的海滩有更多下陷的足迹。 历史是一首唱不完的歌,大自然来作词,人类来谱曲,农民和领袖同样唱得出转音,只不过秦始皇转的大一点,陈胜转的小一点,五线谱写满了前辈们足够的功底,让他们一直从离骚唱到东方红,有花美的霓裳羽衣曲,也有悲凉的骊山怀古,还有黄河大合唱和雄壮的义勇军进行曲,每一个词都是历史的赐予,每一个音符都是感人的触控,在音乐的灵魂里我读出了历史的发展壮大,80后华人的历史不止只唱到R&B,中国人的历史是一首唱不完的歌,我不敢说明天也不敢信明天,但愿明天的歌谣可以让更多的人传唱。 历史不是谁写给谁看得而是谁来书写的,古人写下了万里长城,近现代人写下了万里长征,我们应该写下更多可以万年来辉煌,历史是伟大的。

就高中生物来说,遗传学部分属于有点困难,需要理科思维的部分。但高中学的遗传学也只是最基础的东西罢了

是啊 楼上说的对啊 你要哪方面的啊? 我记得我高中的时候主要做的是有丝分裂的观察

我是复制的,希望对楼主能有所帮助※ Multiplexing:一种同时采用多种样品的测序方法,能够大大提高测序速度。 ※ 突变(Mutation):DNA序列上任一种可以被遗传的变易。 ※ 核苷酸(Nucleotide):DNA和RNA的基本组成部分,通常包含一分子核糖,一分子磷酸和一分子碱基。多个核苷酸通过磷酸二酯键连接成一条链状。 ※ 细胞核(Nucleos):真核细胞中的一种细胞器,内含遗传物质。 癌基因(Oncogene):一种能够导致癌症的基因。许多致癌基因都直接或间接地控制细胞的成长速度。 ※ 噬菌体(phage):一种以细菌为宿主细胞的病毒。 ※ 物理图谱(Physics Map):物理图谱描绘DNA上可以识别的标记的位置和相互之间的距离(以碱基对的数目为衡量单位),这些可以识别的标记包括限制性内切酶的酶切位点,基因等。物理图谱不考虑两个标记共同遗传的概率等信息。对于人类基因组来说,最粗的物理图谱是染色体的条带染色模式,最精细的图谱是测出DNA的完整碱基序列。 ※ 质粒(Plasmid):质粒是细菌的染色体外能够自我复制的环状DNA分子。它能够和细胞核中的染色体明显地区别开来,而且并不是细胞生存的必要物质。一些质粒适宜于引入到宿主细胞中去,并利用宿主细胞的DNA大量繁殖,因此我们常常采用质粒作为外源DNA的载体,外源DNA借助于质粒在宿主细胞中大量繁殖。 ※ 多基因病(Polygenic Disorder):有多个基因位点共同决定的遗传病(如心脏病、糖尿病、一些癌症等)。这类疾病的遗传由多个基因位点共同控制,因而比单基因病的遗传更为复杂。 ※ 多聚酶链式反应(PCR):一种体外扩增DNA的方法。PCR使用一种耐热的多聚酶,以及两个含有20个碱基的单链引物。经过高温变性将模板DNA分离成两条链,低温退火使得引物和一条模板单链结合,然后是中温延伸,反应液的游离核苷酸紧接着引物从5‘端到3’端合成一条互补的新链。而新合成的DNA又可以继续进行上述循环,因此DNA的数目不断倍增。 ※ 多聚酶(Polymerase):多聚酶具有催化作用,能够加快游离的核苷酸和DNA模板结合形成新链的反应速度。 ※ 多态性(Polymorphism):多个个体之间DNA的差异称为多态性。DNA变异概率超过1%的变异,比较适宜作为绘制连接图谱的证据。 ※ 引物(Primer):预先制备的比较短的核苷酸链,在新链合成过程中作为引物,游离的核苷酸在引物之后按顺序和模板上的碱基结合,形成新链。 ※ 原核生物(Prokaryote):原核生物没有细胞膜,结构清晰的核以及其他细胞器。细菌是原核生物。 ※ 探针(Probe):是一条DNA单链或者一条RNA链,具有特定的序列,并且使用放射性元素或者免疫特性物质进行标记。探针和克隆库中的某条互补片段结合成一条双链结构,我们可以借助于探针的检测来获知与其互补的链的位置。 ※ 启动子(Promoter):DNA上的一个特定位点,RNA聚合酶在此和DNA结合,并由此开始转录过程。 ※ 蛋白质(Protein):一种由一条或者多条肽链构成的大分子。每条肽链上核苷酸的顺序是由基因外显子部分的碱基序列决定的。蛋白质是细胞、组织和器官的重要组成部分,每种蛋白质都具有特定的功能。酶、抗体和激素等都是蛋白质。 ※ 嘌呤(Purine):一种含氮的单环结构物。是核苷酸的重要组成部分,有腺嘌呤A和鸟嘌呤G两种。 ※ 嘧啶(Pyrimidine):一种含氮的双环结构,是核苷酸的重要组成部分。分为胞嘧啶C,胸腺嘧啶T和尿嘧啶U三种。 ※ 重组克隆(Recombinant Clone):将不同来源的DNA片段合成在一个DNA分子中,这种技术称为重组,得到的分子为重组克隆。 ※ DNA重组技术(Recombinant DNA Technology):在细胞体外将两个DNA片段连接成一个DNA分子的技术。在适宜的条件下,一个重组DNA分子能够被引入到宿主细胞中并在宿主细胞中大量繁殖。 ※ 调控序列(regulatory regions and sequence):一段控制基因表达的DNA片段。 ※ 限制性内切酶(Restriction enzyme, endonuclease):这种酶能够识别出DNA上特定的碱基序列,并在这个位点将DNA酶切。细菌中有400中限制性内切酶,能够识别出100中DNA序列。 ※ 酶切位点(Restriction Enzyme cutting site):DNA上一段碱基的特定序列,限制性内切酶能够识别出这个序列并在此将DNA酶切成两段。 ※ 限制性长度多态性(Restriction fragment length polymorphsm):从不同个体制备的DNA,使用同一种限制性内切酶酶切,切得的片段长度各不相同。酶切片段的长度可以作为物理图谱或者连接图谱中的标记子。通常是在酶切位点处发生突变而引发的。 ※ 核糖核酸RNA(Ribonucleic acid):从细胞的细胞核和细胞质部分分离出来的化学物质。在蛋白质合成和其他生化反应中起着重要作用,RNA的结构和DNA的结构类似,都是有核苷酸按照一定顺序排列成的长链。RNA可以分为信使RNA、转运RNA、核糖体RNA以及其他类型的RNA。 ※ 核糖体RNA(Ribonsomal RNA rRNA):存在于核糖体中的RNA。 ※ 核糖体(Ribonsome):细胞质中含有rRNA和相关蛋白质的细胞器,是蛋白质的合成场所。 序列位置标签(Sequence Tagged Site, STS):一段短的DNA序列(200-500个碱基对),这种序列在染色体上只出现一次,其位置和碱基顺序都是已知的。在PCR反应中可以检测处STS来,STS适宜于作为人类基因组的一种地标,据此可以判定DNA的方向和特定序列的相对位置。ETS是cDNA上的STS。 ※ 性染色体(Sex Chromosome):在人类细胞中是X或者Y染色体,性染色体决定了个体的性别。雌性细胞中含有两个X染色体,而雄性细胞中含有1个X染色体和1个Y染色体。 ※ 鸟枪法(Shotgun method):使用基因组中的随机产生的片段作为模板进行克隆的方法。 ※ 单基因病(Single Gene Disorder):一个基因的等位基因之间发生了突变造成的疾病。 ※ 体细胞(Somatic Cells):个体中除了生殖细胞及其母细胞之外的细胞,都是体细胞。 ※ 串联重复序列(Tandem repeat sequences):在染色体上一段序列的多次重复,称为串联重复序列。常用来作为物理图谱中的标记子。 ※ 端粒(Telomere):是染色体的末端部分,这一特殊结构区域对于线型染色体的结构和稳定起重要作用。 ※ 转录(Transcription):以某一DNA链为模板,按照碱基互补原则形成一条新的RNA链的过程,是基因表达的第一步。 ※ 转运RNA(tRNA):转运RNA具有特殊的结构,其一端包含3个特定的核苷酸序列,能和信使RNA上的密码子按照碱基配对原则进行结合。另一端则带有一个氨基酸。因此转运RNA能够同细胞质中游离的氨基酸结合并运到核糖体上,核糖体按mRNA上的遗传信息将氨基酸装配成蛋白质。 ※ 转化(Transformation):将外源DNA整合到某一细胞基因组中的过程。。 ※ 翻译(Translation):mRNA上携带的遗传信息指导蛋白质的合成过程,称为翻译。 ※ 病毒(Virus):一种不具备细胞结构的生物体。只能寄生在宿主细胞中才能生存。病毒一般包含核酸以及外壳蛋白,有些动物的病毒的外面也偶尔覆盖一层细胞膜。病毒进入宿主细胞之后,利用宿主的合成机制复制出大量的后代。。 ※ 酵母菌人工合成染色体(Yeast Artificial Chromosome):一种能够克隆长达400Kb的DNA片段的载体,含有酵母细胞中必需的端粒、着丝点和复制起始序列。 (卜东波、伍树明翻译整理) 生物信息名词 §§§ BLAST (Basic Local Alignment Search Tool),基本的基于局部对准的搜索工具;一种快速查找与给定序列具有连续相同片断的序列的技术。 §§§ Entrez 美国国家生物技术信息中心所提供的在线资源检索器。该资源将GenBank序列与其原始文献出处链接在一起。 §§§ NCBI 美国国立生物技术信息中心(National Center for Biotechnology Information),1988年设立,为美国国家医学图书馆(NLM)和国家健康协会(NIH)下属部门之一。提供生物医学领域的信息学服务,如世界三大核酸数据库之一的GenBank数据库,PubMed医学文献检索数据库等。 §§§ Conserved sequence 保守序列。演化过程中基本上不变的DNA中的碱基序列或蛋白质中的氨基酸序列。 §§§ Domain 功能域。蛋白质中具有某种特定功能的部分,它在序列上未必是连续的。某蛋白质中所有功能域组合其起来决定着该蛋白质的全部功能。 §§§ EBI 欧洲生物信息学研究所(European Bioinformatics Institute)。 The National Center for Biotechnology Information (NCBI) at the NationalLibrary of Medicine (NLM), National Institutes of Health (NIH) §§§ EMBL 欧洲分子生物学实验室(uropean Molecular Biology Laboratory)。 §§§ GenBank 由美国国家生物技术信息中心提供的核酸序列数据库。 §§§ Gene 基因。遗传的基本的物理和功能单位。一个基因就是位于某条染色体的某个位置上的核苷酸序列,其中蕴含着某种特定功能产物(如蛋白质或RNA分子)的编码。 §§§ DUST A program for filtering low complexity regions from nucleic acid sequences. §§§ Gene expression 基因表达。基因中的编码信息被转换成行使特定功能的结构产物的过程。 §§§ Gene family 基因家族。一组密切相关的编码相似产物的基因。 §§§ Gene mapping 基因作图。对DNA分子(染色体或质粒)中基因的相对位置和距离进行确定的过程。 §§§ Genetic code 遗传密码。以三联体密码子的形式编码于mRNA中的核苷酸序列,决定着所合成蛋白质中的氨基酸序列。 Genome 基因组。某一物种的一套完整染色体组中的所有遗传物质。其大小一般以其碱基对总数表示。 §§§ Genomics 基因组学。从事基因组的序列测定和表征描述,以及基因活性与细胞功能关系的研究。 §§§ HGMP 英国剑桥的人类基因组绘图计划(Human Genome Mapping Project)。 §§§ Informatics 信息学。研究计算机和统计学技术在信息处理中的应用的学科。在基因组计划中,信息学的内容包括快速搜索数据库方法的开发、DNA序列信息分析方法的开发和从DNA序列数据中预测蛋白质序列和结构方法的开发。 §§§ Physical map 物理图谱。不考虑遗传,DNA中可识别的界标(如限制性酶切位点和基因等)的位置图。界标之间的距离用碱基对度量。对人类基因组而言,最低分辨率的物理图谱是染色体上的条带图谱;最高分辨率的物理图谱是染色体中完整的核苷酸序列。 §§§ Promoter 启动子。DNA中被RNA聚合酶结合并从此起始转录的位点。 §§§ Proteome 蛋白质组。一个基因组的全部蛋白产物及其表达情况。 §§§ Regulatory region or sequence 调控区或调控序列。控制基因表达的DNA碱基序列。 §§§ Ribosomal RNA 核糖体RNA。简写为rRNA。是一组存在于核糖体中的RNA分子。 §§§ Sequence tagged site 序列示踪位点,简写为STS。在人类基因组中只出现一次的位置和序列已知的长约200到500bp的短DNA序列片断。由于可以通过PCR检测到,STS在将来源于许多不同实验室的基因图谱和测序数据进行定位和定向时非常有用,并且STS在人类基因组的物理图谱中也具有界标的作用。表达的序列标签(ESTs)就是那些得自cDNAs的STSs。 §§§ Single-gene disorder 单基因病。由单个基因的等位基因的突变所导致的遗传病(如杜兴肌营养不良和成视网膜细胞瘤等)。 §§§ UniGene 美国国家生物技术信息中心提供的公用数据库,该数据库将GenBank中属于同一条基因的所有片断拼接成完整的基因进行收录。 §§§ 非蛋白质编码区(“Junk”DNA)占据了人类基因组的大部分,研究表明“Junk”是许多对生命过程富有活力的不同类型的DNA的复合体,它们至少包括以下类型的DNA成份或由其表达的RNA成分:内含子(intron)、卫星(Satellite)DNA、小卫星(minisatellite)DNA、微卫星(microsatellite)DNA、非均一核RNA(hmRNA)、短散置元(short interspersed elements)、长散置元(long interspersed elements)、伪基因(pseudogenes)等。除此之外,顺式调控元件,如启动子、增强子等也属于非编码序列。 双重序列对比 两序列间的对比分析。最常见的方法为Needle-Wunsch方法。能够利用的软件如BLAST、FASTA等。 §§§ Autosome 常染色体。与性别决定无关的染色体,人双倍体染色体组含有46条染色体,其中22对常染色体,一对与性别决定有关的性染色体(X和Y染色体)。 sex chromosome. 包括序列(核酸与蛋白)搜索,结构比较,结构预测,蛋白质域,模体(Motif ),测序,发育与进化分析,双向电泳成像分析,质谱蛋白质鉴定,三维蛋白结构模建与成像,基因组图谱比较,基因预测,非编码区功能位点识别,基因组重叠群集装,后基因组功能分析,结构基因组学以及药物基因组学等等。 在,新版中启用了gapped BLAST、PSI-BLAST 和PHI-BLAST。gapped BLAST是比原BLAST 更灵敏更快的局部相似联配(俗称局部同源)搜索法;PSI- BLAST用迭代型的剖面打分算法,每次迭代所费时间与前者相同,它可检索弱同源的目标;PHI-BLAST 98年刚出台,是模体(Motif )构造与搜索软件,是更灵敏的同源搜索软件。例如线虫§§§ 的CED4是apoptosis 的调控蛋白,含有涉及磷酸结合的P 环模体,在各种ATP 酶和GTP 酶中可发现。在用gapped BLAST搜索NR数据库时,CED4仅跟人凋亡调控蛋白Apaf-1显著同源或相似(其中含有P-loop保守区)。但PHI- BLAST搜索,另有一个显著同源(E= )目标,是植物抗病蛋白Arabidopsis thaliana ,证实此动物与植物蛋白确实在apoptosis 中有相似的功能。另有,按PHI- BLAST搜索在MutL DNA修复蛋白中的ATP 酶域,II型拓扑异构酶,组氨酸激酶和HS90家族蛋白,发现一个新的真核蛋白族,共有HS90型ATP 酶域。再有在古核tRNA核苷酸转移酶中发现核苷酸转移酶域,在细菌DNA 引物酶的古核同源体中发现螺旋酶超家族II的模体VI。用以往的搜索法这些是得不到的。 深层事项: 后基因组时期的主要任务:Data mining ,即从完全测序的基因组中预测功能。 1 、序列、结构和功能 自分子生物学产生以来,均相信序列决定结构,结构决定功能。随着基因组学的发展,对此理解已有长足的深化。同源序列(具有共同祖先)未必具有相同的功能;相同功能未必源自同源序列。相异序列可能有相似的结构;序列与结构不相似的蛋白可能会有相似的功能。现在发现存在不相似(在序列与结构水平上)酶催化相同的生化反应。当然亦存在甚至结构水平上很相似的酶催化不同的生化反应。例如人与鼠的3?- 羟甾类脱氢酶,1AHH和1RAL;前者是Rossmann折叠,而后者是TIM-桶。肯定,这些相似酶不是共同祖先趋异的结果,而是不同祖先趋同的结果。如结构决定功能还是合理的,那么至少在功能活性位点具有相似结构特征(即3D- 功能模体)。属于今后研究的课题,对了解酶催化机制与功能蛋白的小分子模拟具有很大价值。 何谓功能?功能有层次的:表型的,细胞的和分子的。 目前开始高层功能预测,分子相互作用、代谢途径和调控网络。目前,已从结构基因组学,功能基因组学和蛋白质组学多种角度研究基因组功能。 2 、结构基因组学中的生物信息学 希望大通量地测定和模建完全测序基因组的全部蛋白三维结构。生物信息学可以发挥作用,一方面规划好测定的对象,另一方面可靠地模建结构。 3 、功能基因组学中的生物信息学 美国HGP 已编制1998-2003 的新五年计划。提出八项目标:其中目标7 特指生物信息学和计算生物学,其实几乎每项目标都要生物信息学,例如目标4 功能基因组学中的非编码区功能位点预测,基因表达分析(如DNA Chip)以及蛋白质全局分析(如蛋白质组学)。 §§§ 蛋 白 质 组 学(Proteomics) 1.蛋白质组学研究的目的和任务 20世纪中期以来,随着DNA双螺旋结构的提出和蛋白质空间结构的X射线解析,开始了分子生物学时代,对遗传信息载体DNA和生命功能的主要体现者蛋白质的研究,成为生命科学研究的主要内容。90年代初期,美国生物学家提出并实施了人类基因组计划,预计用15年的时间,30亿美元的资助,对人类基因组的全部DNA序列进行测定,希望在分子水平上破译人类所有的遗传信息,即测定大约30亿碱基对的DNA序列和识别其中所有的基因(基因组中转录表达的功能单位)。经过各国科学家8年多的努力,人类基因组计划已经取得了巨大的成绩,一些低等生物的DNA全序列已被阐明,人类3%左右DNA的序列也已测定,迄今已测定的表达序列标志(EST)已大体涵盖人类的所有基因。在这样的形势下,科学家们认为,生命科学已经入了后基因组时代。在后基因组时代,生物学家们的研究重心已经从解释生命的所有遗传信息转移到在整体水平上对生物功能的研究。这种转向的第一个标志就是产生了一门成为功能基因组学(Functional Genomics)的新学科。它采用一些新的技术,如SAGE、DNA芯片,对成千上万的基因表达进行分析和比较,力图从基因组整体水平上对基因的活动规律进行阐述。但是,由于生物功能的主要体现者是蛋白质,而蛋白质有其自身特有的活动规律,仅仅从基因的角度来研究是远远不够的。例如蛋白质的修饰加工、转运定位、结构变化、蛋白质与蛋白质的相互作用、蛋白质与其它生物分子的相互作用等活动,均无法在基因组水平上获知。正是因为基因组学(Genomics)有这样的局限性,于90年代中期,在人类基因组计划研究发展及功能基因组学的基础上,国际上萌发产生了一门在整体水平上研究细胞内蛋白质的组成及其活动规律的新兴学科——蛋白质组学(Proteomics),它以蛋白质组(Proteome)为研究对象。蛋白质组是指“由一个细胞或一个组织的基因组所表达的全部相应的蛋白质”。测定一个有机体的基因组所表达的全部蛋白质的设想,萌发在1975年双向凝胶电泳发明之时。1994年Williams正式提出了这个问题,而“蛋白质组”的名词则是由Wilkins创造的,发表在1995年7月的Electrophoresis杂志上。蛋白质组与基因组相对应,但二者又有根本不同之处:一个有机体只有一个确定的基因组,组成该有机体的所有不同细胞斗拱享用一个确定的基因组;而蛋白质组则是一个动态的概念,她不仅在同一个机体的不同组织和细胞中不同,在同一机体的不同发育阶段,在不同的生理状态下,乃至在不同的外界环境下都是不同的。正是这种复杂的基因表达模式,表现了各种复杂的生命活动,每一种生命运动形式,都是特定蛋白质群体在不同时间和空间出现,并发挥功能的不同组合的结果。基因DNA的序列并不能提供这些信息,再加上由于基因剪接,蛋白质翻译后修饰和蛋白质剪接,基因遗传信息的表现规律就更加复杂,不再是经典的一个基因一个蛋白的对应关系,一个基因可以表达的蛋白质数目可能远大于一。对细菌,可能为~;对酵母则为3;而对人,可高达10。后基因组和蛋白质组研究,是为阐明生命活动本质所不可缺少的基因组研究的远为复杂的后续部分,无疑将成为21世纪生命科学研究的主要任务。

关于人类遗传病的论文

这个网上的论文感觉不是很多~你可以在(亚洲遗传病病例研究)期刊里面找下~网上应该可以找的到的~

遗传与变异 ---新形式下的基因突变 ( 2005动物科学院 X X X ) 摘要:染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 关键词:遗传;变异;基因突变 遗传从现象来看是亲子代之间的相似的现象,即俗语所说的“种瓜得瓜,种豆得豆”。它的实质是生物按照亲代的发育途径和方式,从环境中获取物质,产生和亲代相似的复本。 遗传是相对稳定的,生物不轻易改变从亲代继承的发育途径和方式。因此,亲代的外貌、行为习性,以及优良性状可以在子代重现,甚至酷似亲代。而亲代的缺陷和遗传病,同样可以传递给子代。 遗传是一切生物的基本属性,它使生物界保持相对稳定,使人类可以识别包括自己在内的生物界。 变异是指亲子代之间,同胞兄弟姊妹之间,以及同种个体之间的差异现象。俗语说“一母生九子,九子各异”。世界上没有两个绝对相同的个体,包括挛生同胞在内,这充分说明了遗传的稳定性是相对的,而变异是绝对的。 生物的遗传与变异是同一事物的两个方面,遗传可以发生变异,发生的变异可以遗传,正常健康的父亲,可以生育出智力与体质方面有遗传缺陷的子女,并把遗传缺陷(变异)传递给下一代。 遗传和变异的物质基础 生物的遗传和变异是否有物质基础的问题,在遗传学领域内争论了数十年之久。 在现代生物学领域中,一致公认生物的遗传物质在细胞水平上是染色体,在分子水平上是基因,它们的化学构成是脱氧核糖核酸(DNA),在极少数没有DNA的原核生物中,如烟草花叶病毒等,核糖核酸(RNA)是遗传物质。 真核生物的细胞具有结构完整的细胞核,在细胞质中还有多种细胞器,真核生物的遗传物质就是细胞核内的染色体。但是, 细胞质在某些方面也表现有一定的遗传功能。人类亲子代之间的物质联系是精子与卵子,而精子与卵子中具有遗传功能的物质是染色体,受精卵根据染色体中DNA蕴藏的遗传信息,发育成和亲代相似的子代。 一、遗传与变异的奥秘 俗话说“种瓜得瓜,种豆得豆”,这是生物遗传的根本特征。人类与其他生物一样,在世代的交替中,子女(子代)总是保持着父母(亲代)的某些基本特征,这种现象就是遗传。但子代又会与亲代有所差异,有的差异还很明显。子代与亲代的这植钜炀褪潜湟臁R糯�捅湟焓巧��淖罨�咎卣髦�唬�ü��镆淮��姆敝程逑殖隼础? 遗传和可以遗传的变异都是由遗传物质决定的。这种遗传物质就是细胞染色体中的基因。人类染色体与绝大多数生物一样,是由DNA(脱氧核糖核酸)链构成的,基因就是在DNA链上的特定的一个片段。由于亲代染色体通过生殖过程传递到子代,这就产生了遗传。染色体在生物的生活或繁殖过程中也可能发生畸变,基因内部也可能发生突变,这都会导致变异。 如遗传学指出:患色盲的父亲,他的女儿一般不表现出色盲,但她已获得了其亲代的色盲基因,她的下一代中,儿子将因获得色盲基因而患色盲。 我们观察我们身边很多有生命的物种:动物、植物、微生物以及我们人类,虽然种类繁多,但在经历了很多年后,人还是人,鸡还是鸡,狗还是狗,蚂蚁、大象、桃树、柳树以及各种花草等等,千千万万种生物仍能保持各自的特征,这些特征包括形态结构的特征以及生理功能的特征。正因为生物界有这种遗传特性,自然界各种生物才能各自有序地生存、生活,并繁衍子孙后代。 大家可能会问,生物是一代一代遗传下来,每种生物的形态结构以及生理功能应该是一模一样的,但为什么父母所生子女,一人一个样,一人一种性格,各有各自的特征。又如把不同人的皮肤或肾脏等器官互相移植,还会发生排斥现象,彼此不能接受,这又如何解释呢?科学家研究的结果告诉我们,生物界除了遗传现象以外还有变异现象,也就是说个体间有差异。例如,一对夫妇所生的子女,各有各的模样,丑陋的父母生出漂亮的孩子,平庸的父母生出聪明的孩子,这类情况也并不罕见。全世界恐怕很难找出两个一模一样的人,既使是单卵双生子,外人看起来好像一模一样,但是与他们朝夕相处的父母却能分辨出他们之间的微细差异,这种现象就是变异。人类中多数变异现象是由于父母亲遗传基因的不同组合。每个孩子都从父亲那里得到遗传基因的一半,从母亲那里得到另一半,每个孩子所得到的遗传基因虽然数量相同,但内容有所不同,因此每个孩子都是一个新的组合体,与父母不一样,兄弟姐妹之间也不一样,而形成彼此间的差异。正因为有变异现象,人类才有众多的民族。人们可以很容易地从人群中认出张三、李四,如果没有变异,大家全都是一个样子,社会上的麻烦事就多了。除了外形有不同,变异还包括构成身体的基本物质--蛋白质也存在着变异,每个人都有他自己特异的蛋白质。所以,如果皮肤或器官从一个人移植到另一个人身上便会发生排斥现象,这就是因为他们之间的蛋白质不一样的缘故。 还有一类变异是遗传基因的突变,这类突变往往是由环境中的条件所诱发的,这种突变的基因还可以遗传给下一代。许多基因突变的结果会造成遗传病。 变异也可以完全由环境因素所造成,例如患小儿麻痹症后遗的跛足,感染大脑炎后形成的痴呆等这些性状都是由环境因素所造成的,是因为病毒感染使某些组织受损害,造成生理功能的异常,不是遗传物质的改变,所以不是遗传的问题,因此也不会遗传给下一代。 总之,遗传与变异是遗传现象中不可分离的两个方面,我们有从父母获得的遗传物质,保证我们人类的基本特征经久不变。在遗传过程中还不断地发生变异,每个人又在一定的环境下发育成长,才有了人类的多种多样。 二、遗传变异的科学理论 遗传的分子基础 (一)遗传物质的存在形式 (1)染色体是遗传物质的载体,遗传信息以基因的形式蕴藏于DNA分子中; (2)每个人体体细胞含两个染色体组,每个染色体组的DNA构成一个基因组; (3)广义的基因组包括细胞核染色体基因组和线粒体基因组; (4)人类细胞核染色体基因组中90%左右为DNA重复序列,10%为单一序列; (5)多基因家族是真核基因组中重要的结构之一。 (二)基因的结构及其功能 、真核生物基因的分子结构 (1)、基因的DNA序列由编码序列和非编码序列两部分构成,编码序列是不连续的,被非编码序列分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因;编码序列称为外显子,非编码序列称为内含子; (2)、在每个外显子和内含子的接头区存在高度保守的一致序列,称为外显子-内含子接头,即在每个内含子的5’端开始的两个核苷核为GT,3’端末尾是AG,特称之为GT-AG法则; (3)、真核生物基因的大小相关悬殊,外显子和内含子的关系也不是固定不变的; (4)、DNA分子两条链中,5’→3’链称为编码链,其碱基排列序列中储存着遗传信息;3’→5’链称为反编码链,是RNA合成的模板; (5)、每个断裂基因中第一个外显子和最后一个外显子的外侧都有一段不被转录的非编码区,称为侧翼序列,其上有一系列调控序列,对基因的表达起调控作用。这些结构包括: ①启动子:位于基因转录起始处,是RNA聚合酶的结合部位,能启动基因转录。 ②增强子:位于基因转录起始点的上游或下游,能增强启动子转录,提高转录效率; ③终止子:位于3’端非编码区下游的一段序列,在转录中提供转录终止信号。 、基因的复制 (1)、基因的复制是以DNA复制为基础的,每个DNA分子上有多个复制单位(复制子); (2)、每个复制子有一个复制起点,从起点开始双向复制,在起点两侧各形成一复制叉; (3)、DNA聚合酶只能使DNA链的3’端加脱氧核苷核,故复制只能沿5’→3’方向进行; (4)、与复制叉同向的新链复制是连续的,速度也较快,称为前导链;与复制叉反向的新链复制是不连续的(先要在RNA引物存在下合成一个个冈崎片段,然后在DNA连接酶作用下补上一段DNA),速度也较慢,称为后随链;故DNA的复制是半不连续复制; (5)、复制后的DNA分子都含有一条旧链和一条新链,故DNA的复制又是半保留复制。 、基因的表达 基因表达是DNA分子中所蕴藏的遗传信息通过转录和翻译形成具有生物活性的蛋白质或通过转录形成RNA发挥功能作用的过程。 (1)、转录:是在RNA聚合酶催化下,以DNA为模板合成RNA的过程。 ①新合成好的RNA称为不均一核RNA(也叫核内异质RNA,hnRNA); ②hnRNA要经过“戴帽”和“加尾”以及剪接等加工过程才能形成成熟的mRNA。 (2)、翻译:是以mRNA为模板指导蛋白质合成的过程。 ①mRNA分子中每3个相邻的碱基为三联体,能决定一种氨基酸,称为密码子; ②翻译后的初始产物大多无功能,需经进一步加工才可成为有一定活性的蛋白质。 、基因表达的调控(了解操纵子学说) 、基因的突变 (1)、基因突变的概念:基因突变是DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 (2)、基因突变的方式 ①碱基替换 也叫点突变,包括转换和颠换两种方式。其后果可以造成同义突变、错义突变、无义突变或终止密码突变(延长突变)等生物学效应。 ②移码突变 是DNA分子中某一位点增加或减少一个或几个碱基对,造成该位点以后的遗传编码信息全部发生改变。 ③动态突变 微卫星DNA或短串联重复序列,尤其是三核苷酸的重复,在靠近基因或位于基因序列中时,其重复次数在一代一代的传递中会出现明显增加的现象,导致某些遗传病的发生。 (3)、基因突变的修复 ①切除修复 是一种多步骤的酶反应过程,首先将受损的DNA部位切除,然后再合成一个片段连接到切除的部位以修补损伤。 ②重组修复 又称复制后修复,是在DNA受损产生胸腺嘧啶二聚体(T-T)以后,当DNA复制到损伤部位时,再与T-T相对应的部位出现切口,完整的DNA链上产生一个断裂点。此时,在重组蛋白作用下,完整的亲链与有重组的子链发生重组,亲链的核苷酸片段补充了子链上的缺失。重组后亲链的切口在DNA聚合酶作用下,以对侧子链为模板,合成单链DNA片段来填补,随后在DNA连接酶作用下,以磷酸二酯键使新片段与旧链相连接,而完成修复过程。 2、遗传的细胞基础 染色质:在间期细胞核,染色质的功能状态不同,折叠程度也不同,分为常染色质和异染色质两种。1、常染色质 在细胞间期处于解螺旋状态,具有转录活性,呈松散状,染色较浅;2、异染色质 在细胞间期处于凝缩状态,很少进行转录或无转录活性,染色较深;3、性染色质 在间期细胞核中染色体的异染色质部分显示出来的一种特殊结构,有两种:(1)、X染色质 正常女性间期细胞核中有一个染色较深,大小约为10nm的椭圆形小体(了解Lyon假说)。(2)、Y染色质 正常男性间期细胞核用荧光染料染色后,核内可见一个圆形或椭圆形的强荧光小体,直径为3nm左右。 染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 (三)人类的正常核型:色体数目、形态结构特征的分析叫核型分析。1、非显带核型 根据丹佛体制,将正常人类体细胞的46条染色体分为23对7个组(A、B、C、D、E、F和G组)。在描述一个核型时,首先写出染色体总数(包括性染色体),然后是一个“,”号,最后是性染色体。正常男性核型描述为46,XY;女性为46,XX。2、显带核型 用各种特殊的染色方法使染色体沿长轴显现出一条条明暗交替或深浅相间的带,故又叫带型。根据ISCN规定,描述一特定带时,需要写明4项内容:①染色体号;②臂号;③区号;④带号。 遗传的基本规律:孟德尔提出的分离定律和自由组合定律以及摩尔根提出的连锁与交换定律构成了遗传的基本规律,通称为遗传学三大定律。分离律说的是遗传性状有显隐性之分,这样具有明显显隐性差异的一对性状称为相对性状。相对性状中的显性性状受显性基因控制,隐性性状由一对纯合隐性基因决定。杂合体往往表现显性基因的性状。基因在体细胞中成对存在,在形成配子时,彼此分离,进入不同的子细胞。减数分裂时同源染色体彼此分离,分别进入不同的生殖细胞是分离律的细胞学基础。自由组合律是说生物在形成配子时,不同对基因独立行动,可分可合,以均等的机会组合到同一个配子中去。减数分裂过程中非同源染色体随机组合于生殖细胞是自由组合律的细胞学基础。连锁与交换律是说位于同一条染色体上的基因是互相连锁的,它们常一起传递(连锁律),但有时也会发生分离和重组,是因为同源染色体上的各对等位基因进行了交换。减数分裂中,同源染色体联会和交换是交换律的细胞学基础。 单基因性状的遗传:遗传性状受一对基因控制的,称单基因性状的遗传。单基因性状又叫质量性状。1、决定某种遗传性状的等位基因,在传递时服从分离律;2、当决定两种遗传性状的基因位于不同对染色体上时,这两种单基因性状的传递符合自由组合律。3、如果决定两种遗传性状的基因位于同一对染色体上时,它们的传递将从属于连锁与交换律。 多基因性状的遗传:由多基因控制的性状往往与单基因性状不同,其变异往往是连续的量的变异,称为数量性状。每对基因对多基因性状形成的效应是微小的,称为微效基因。微效基因的效应往往是累加的。多基因遗传性状除受多基因遗传基础影响外,也受环境因素影响。(熟悉多基因遗传假说,了解多基因遗传的特点) 遗传的变异:(一)染色体异常与疾病;染色体异常类;形成机; 数目畸变 整倍性改变 单倍体 多倍体 双雄受精,双雄受精,核内复制 非整倍性改变 亚二倍体 染色体不分离,染色体丢失 超二倍体 结构畸变 缺失(del) 受多种因素影响,如物理因素、化学因素和生物因素等 重复(dup) 倒位(inv) 易位(t) 环状染色体 双着丝粒染色体 等臂染色体 1、一个个体内同时存在两种或两种以上核型的细胞系,这种个体称嵌合体。 2、染色体结构畸变的描述方式有简式和详式两种。 (二)人类的单基因遗传病1、常染色体显性遗传(AD)病 (1)、AD系谱特点:①致病基因位于常染色体上,遗传与性别无关;②患者双亲中至少有一方是患者,但多为杂合体;③患者与正常个体结婚,后代有1/2的发病风险;④系谱中可看到连续传递现象。 (2)、其它AD类型:①不完全显性或半显性,是指杂合体的表现型介于显性纯合体与隐性纯合体的表现型之间;②不规则显性,是指杂合体由于某种原因不一定表现出相应的症状,即使发病,但病情程度也有差异;③共显性,是指一对等位基因无显隐性之分,杂合状态下,两种基因的作用都能表现出来;④延迟显性,有显性致病基因的杂合体在生命早期不表现出相应症状,当到一定年龄后,其作用才表达出来。 2、常染色体隐性遗传(AR)病 (1)、AR系谱特点:①致病基因的遗传与性别无关,男女发病机会均等;②患者双亲往往表型正常,但都是致病基因的携带者,患者的同胞中约有1/4的可能将会患病,3/4表型正常,但表型正常者中2/3是可能携带者;③系谱中看不到连续传递现象,常为散发;④近亲婚配后代发病率比非近亲婚配后代发病率高。 (2)、常见AR病:苯丙酮尿症、白化病、先天性聋哑、高度近视和镰状细胞贫血等。 3、X连锁显性遗传(XD)病 (1)、XD系谱特点:①系谱中女性患者多于男性患者,且女患者病情较轻;②患者双亲中至少有一方是患者;③男性患者后代中,女儿都为患者,儿子都正常;女性患者后代中,子女各有1/2的患病风险;④系谱中可看到连续传递现象。 (2)、常见XD病:抗维生素D性佝偻病。 4、X连锁隐性遗传(XR)病 (1)、XR系谱特点:①人群中男性患者远多于女性患者;②双亲无病时,儿子可能发病,女儿则不会发病;③由于交叉遗传,患者的兄弟、舅父、姨表兄弟和外甥各有1/2的发病风险;④如果女性是患者,父亲一定是患者,母亲一定是携带者或患者。 (2)、常见XR病:甲型血友病、红绿色盲。 5、Y连锁遗传(YL)病 全男性遗传 (三)多基因遗传病 1、有关多基因遗传病的几个重要概念 (1)、易感性 在多基因遗传病中,由多基因遗传基础决定某种多基因病发病风险高低。 (2)、易患性 由遗传基础和环境因素共同作用,决定了一个个体是否易于患病。 (3)、发病阈值 当一个个体的易患性高达一定水平即达到一个限度时,这个个体就将患病,这个易患性的限度称为阈值。 (4)、遗传度 在多基因遗传病中,易患性受遗传基础和环境因素的双重影响,其中遗传基础所起作用大小的程度称为遗传度或遗传率。一般用百分率(%)来表示。 2、多基因遗传病的特点 (1)、有家族聚集倾向,患者亲属的发病率高于群体发病; (2)、随着亲属级别的降低,患者亲属的发病风险迅速降低; (3)、近亲婚配时,子女患病风险增高; (4)、发病率有种族(或民族)差异。 三、遗传与变异在当代 人类基因组计划的工作草图已于今年的6月26日绘制完成,但要将全部30多亿个碱基完全装配完成还需要一段时间,预计要到明年的6月份。即使完成了人类基因组计划的“精图”,也只是我们认识人类基因功能的开始,完全弄清基因的功能及其相互间的作用,至少还要40年的时间。毋庸赘言,这是一项浩繁巨大的工程。 迄今为止,人们对整个人类基因组中所含有的基因数目尚存争议,有人说是3万,有人说是14万,相差非常大。在整个人类基因组序列中,只存在1%的差异,就是这1%的差异导致了人种、肤色、身高、眼睛、胖瘦以及疾病的易感性等方面的不同。科学家除继续研究基因的数量和功能外,基因在多大程度上受外界环境和体内因素的影响以及这种改变是否可以一代代地延续下去,也是需要解决的问题。 上述问题涉及到后成说(epigenetics)这一范畴。后成说是研究通过其他的化学途径,而不是通常所说的碱基突变,使基因活性发生半永久性改变的一门科学。后成说的重要性一直存有很大争议。如果后成说真有科学依据的话,那么它将是解释不同个体之间,甚至不同物种之间存在差异的关键所在,同时还将是疾病发生的一个重要机制。 不同基因的表达:基因含有合成蛋白质的指令,蛋白质合成的过程称为基因表达。但是遗传学家们很早以前就知道通过对DNA链碱基上的化学基团进行修饰来调控基因表达、影响蛋白质的合成。最常见的修饰方式是基因的甲基化(甲基是由一个碳原子和三个氢原子组成的基团),即在基因上添加甲基基团,结果常常会终止基因表达。 科研人员通过对某些哺乳动物的研究发现,此类修饰只存在于个体中,而不遗传给后代,因为这种修饰在精子和卵子细胞中常常被清除。最近有人发现,后成特征在小鼠中可以遗传。在悉尼大学生化学家怀特劳博士所做的实验中,遗传学相同的小鼠,同其父母相比,更像它们的母亲。因为它们继承了其母亲的卵子DNA的甲基化类型。该型甲基化在决定小鼠毛色中起着非常重要的作用。 怀特劳博士小组的大量的研究数据表明,要探明动物是如何把物理特征或疾病易感性传给后代的,有必要先搞清可遗传的后成特征。如果后成特征可遗传,那么这些特征所引起的疾病应能够像普通的基因突变一样在家系之间传递。该研究小组对小鼠的后成标记在传代过程中如何关闭和表达进行了深入地研究。研究人员将一个可以产生特异类型红细胞的基因(称为转基因)导入具有相同遗传学特征小鼠的基因组中(接受该基因的小鼠称之为转基因鼠)。研究发现这些转基因小鼠体内的转基因正以不同的方式表达。有些转基因小鼠体内40%的红细胞表达该基因,而另一些则根本就不表达。同时该小组还对小鼠毛色进行了研究,发现与毛色有关的DNA甲基化增高与转基因的不表达(或称为“沉默”表达)有关。但是在这种情况下,后成性改变可来自父方,也可以来自母方。 令人费解的是,虽然这种基因表达的沉默现象至少可以维持三代,但不是不可逆转的。在该型的后代小鼠与非同类小鼠交配时,发现在后代小鼠中不存在甲基化和表达沉默现象,转基因又可在小鼠的幼崽中获得表达。如果这种基因沉默和再活化现象是自然发生的话,那么就可以解释个体之间和代与代之间差异的原因。 后成说还可以解释物种之间的差异。最近普林斯顿大学的迪尔格曼通过两种相近小鼠的交配,将多个小鼠基因上的后成特征破坏。这些小鼠相互之间不能进行正常的交配,并且它们杂交的后代表现为生长异常。研究人员认为这种生长异常与杂交后代基因上的甲基化模式破坏有关。他们推测后成性效应非常显著,仅靠改变这些特征就可以造就新物种。 大家都知道,物种的产生是遗传变异逐渐积累的结果。但是,迪尔格曼认为有些物种出现之快不是该假说所能解释的。所以物种后成说的假设有一定优势。例如,甲基化可以迅速地关闭整条基因的表达,并引起根本的改变。这种改变足以阻止新的品种与旧品种之间的杂交,尤其是阻止新物种的产生。 四、结论 变异基因的表达:许多生物学家对此种假说表示不屑。基因序列虽不能完全解释动物的特征,但是至少可以解释一些由基因突变所引起的疾病。 疾病基因突变假说的倡导者把癌症作为经典的实例,来说明在个体DNA水平上,到底有多少碱基差错才能导致肿瘤。但加州大学伯克利分校的杜斯博格博士不同意这一观点,认为癌症并不是由基因异常引起的,而是由另一形式的后成现象 染色体异常引起的。 根据癌症基因突变假说,指导细胞分裂和死亡的基因突变使正常的细胞分裂和死亡过程遭到破坏,导致细胞不受控制地生长。但是,最近杜斯博格博士领导的研究小组报道,至今还没有人证实突变的基因会使正常的细胞变为癌细胞。他还指出,如果突变基因对细胞分裂具有显著影响的话,为什么有些情况下,突变发生的数月甚至数年后才发展为癌症,这是非常奇怪的现象。他认为可以用后成性非整倍现象对上述问题加以解释,非整倍性是指细胞具有错误的染色体个数。 在细胞分裂时,染色体排列整齐,通过纺锤体(一种蛋白质的支架)分配到子代细胞中。杜斯博格推测,致癌的化学物质可以影响纺锤体,因此,造成子代细胞具有或多或少的染色体。由于这种错误分配的染色体不稳定,细胞分裂时染色体之间相互混合并发生非自然的重组。 大多数重组对细胞而言是至关重要的,但最终会产生一个分裂异常的细胞。产生这种异常细胞的概率非常小,这种低概率事件可以解释为什么从接触致癌物质到细胞发生癌变,要经过这么长时间。细胞的非整倍性是5000多种肿瘤的一种显著特征。 与个体碱基突变相比,染色体数的增加或减少使细胞表征发生显著改变。因为染色体数目的改变(即非整倍性),可以导致成千上万种蛋白质活性发生改变,而不仅仅是一种或两种蛋白质,导致细胞分裂的失控。假如这种假说成立的话,那么现在试图通过定点修复癌基因来治疗癌症的策略将毫无效果。 杜斯博格博士10年前曾因自己的假说而声名狼藉,他认为人类免疫缺陷病毒(HIV)并不能引起艾滋病。一系列的HIV和艾滋病的研究表明,杜斯博格的理论是极其荒谬的。这严重地损害了他的声誉,因此,他的其他理论也很容易被人忽视。但是,他的非整倍性假说似乎非常有价值。癌症中非整倍体的普遍性尚需进一步阐明。

遗传病,是指遗传物质发生改变或者由致病基因所控制的疾病,通常具有垂直传递和终身性的特征.因此,遗传病具有由亲代向后代传递的特点.这种传递不仅是指疾病的传递,最根本的是指致病基因的传递.所以,遗传病的发病表现出一定的家族性.父母的生殖细胞(精子和卵细胞)里携带的致病基因,通过生殖传给子女并引起发病,而且这些子女结婚后还可能把致病基因传给下一代.单基因遗传病(1种病由1对基因决定)约有3360多种,如家族性多发性结、成骨不全症、 牛皮癣 、高胆固醇血症、多囊肾、神经纤维瘤、视网膜母细胞瘤、腓肌萎缩症、软骨发育不全、上睑下垂、全身自化、 着色性干皮病、鱼鳞症、眼球震颤、视网膜色素变性、抗维生素D佝偻病等。常染色体显性遗传病(多指、并指、结肠息肉)常染色体隐性遗传病(苯丙酮尿症、先天聋哑、高度近视等)。半x染色体隐性遗传病(血友病)人群中受累人数约占10%左右。多基因遗传病(每种病由多对基因和环境因素共同作用),病种虽不多,但发病率高,多为常见病和多发病。如原发性 高血压 、支气管 哮喘 、 冠心病 、 糖尿病 、类风湿性关节炎、 精神分裂 症、 癫痫 、先天性 心脏病 、 消化性溃疡 、下肢 静脉曲张 、 青光眼 、肾结石、脊柱裂、无脑儿、唇裂、腭裂、畸形足等。其特点是:1.家族聚集 2.受环境影响较大。人群中受累人数约占20%左右。染色体病(染色体异常所致的遗传病)近500种,如先天愚型(伸舌样痴呆)、原发性小睾症、先天性卵巢发育不全症、 两性 畸形等。人群中受累人数约占1%左右。一个最为有效的方法就是提倡和实行优生:1.禁止近亲结婚:可以大大降低隐性遗传病的发生概率。2.进行产前诊断。3.有遗传病史的夫妻还要进行遗传咨询,主要要调查家族史。4.在适合的生育年龄生育(24~29周岁)[编辑本段]常见遗传病遗传病是指由于遗传物质改变所致的疾病。具有先天性、终生性和家族性。病种多、发病率高。目前已发现的遗传病超过3000种,估计每100个新生儿中约有3~10个患有各种程度不同的遗传病。1.高血压遗传危险度:★★★★★科学家已培育成功一种“遗传性自发高血压”老鼠。这种老鼠会把高血压的基因一代代传下去,它们的子孙100%会发生高血压,这是高血压与遗传密切相关的最典型例子。目前多数学者认为,高血压属于多基因遗传性疾病。通过高血压患者家系调查发现,父母均患有高血压者,其子女今后患高血压概率高达45%;父母一方患高压病者,子女患高血压的几率是28%;而双亲血压正常者其子女患高血压的概率仅为3%。防治原则1.坚持监测血压,正常状态下至少每年1次。2.限盐补钾。逐步把每日摄入食盐的量控制到5克,同时多吃富含钾的水果、蔬菜(如香蕉、核桃仁、莲子、芫荽、苋菜、菠菜等)。3.防止超重和肥胖。4.戒烟限酒。2.糖尿病遗传危险度:★★★★★糖尿病具有明显遗传易感性(尤其是临床上最常见的2型糖尿病)。家系研究发现,有糖尿病阳性家族史的人群,其糖尿病患病率显著高于家族史阴性人群。而父母都有糖尿病者,其子女患糖尿病的机会是普通人的15~20倍。防治原则诱发糖尿病的“外因”有热量摄取太多,活动量下降,肥胖,吸烟以及心理压力过大等。反过来,避免以上因素就可预防糖尿病。在饮食方面,应该做到粮食、肉蛋奶、蔬菜、水果的合理搭配,注意摄入量与消耗量平衡。常测体重,如果体重增加了,热量肯定摄入过量,这时就应检讨你的食谱并增加运动。3.血脂异常遗传危险度:★★★血脂代谢异常有许多原因,其中之一就是遗传因素。随着医学科学发展,目前已经发现有相当部分血脂异常患者存在一个或多个遗传基因缺陷。由遗传基因缺陷所致血脂异常多具有家族聚集性,有明显遗传倾向,临床上通称为家族性血脂异常。防治原则最重要的是强调“迈开腿,管住嘴”。一方面要适当限制饮食,但食物种类应尽量丰富,选用低脂食物(植物油、酸牛奶),增加维生素、纤维素(水果、蔬菜、面包和谷类食物),控制体重。同时加强锻炼,使热量消耗掉才不至于使脂肪在体内堆积。4.乳腺癌遗传危险度:★★★乳腺癌有明显的家族遗传倾向。流行病学调查发现,5%~10%的乳腺癌是家族性的。如有一位近亲患乳腺癌,则患病的危险性增加~3倍;如有两位近亲患乳腺癌,则患病率将增加7倍。发病的年龄越轻,亲属中患乳腺癌的危险越大。防治原则有乳腺癌家族史者要特别注意自查,以发现乳癌的蛛丝马迹,早期治疗。乳房包块是乳腺癌最常见的体征,这种包块与乳腺增生包块不同,常为单个,形态不规则,质地较硬,活动度不好,大多无疼痛,与月经周期无明显关系。此外,如发现有乳头湿疹、溢液、皱缩,也应引起重视,到医院做进一步检查。5.胃癌遗传危险度:★★★胃癌患者有明显的家族聚集性。调查发现,胃癌患者的一级亲属(即父母和亲兄弟姐妹)得胃癌的危险性比一般人群平均高出3倍。比较著名的如拿破仑家族,他的祖父、父亲以及三个妹妹都因胃癌去世,整个家族包括他本人在内共有7人患了胃癌。防治原则患胃癌危险因素包括缺乏体育锻炼、精神压抑、吸烟、喜食烟熏食品、喜食重盐饮食、过量摄入肉类、幽门螺杆菌感染、胃溃疡等。而喜食菌类、新鲜水果是胃癌的保护因素。值得注意的是,胃癌的家族聚集现象可能与共同感染幽门螺杆菌有关,有胃癌家族史者应去医院监测有无该细菌感染,有则及时治疗。6.大肠癌遗传危险度:★★★家族遗传导致的大肠癌占大肠癌发病总人数的10%~15%。亲属中有大肠癌患者的人,患此病的危险性比普通人大3~4倍,如果家族中有两名或以上的近亲(父母或兄弟姐妹)患大肠癌,则为大肠癌的高危人群。防治原则有大肠癌家族史者应多吃新鲜食物,少吃腌、熏食物,不吃发霉食物,少饮含酒精饮料,戒烟。如出现以下症状要及时去医院检查:①大便习惯改变,大便次数增多,或腹泻与便秘交替出现。②大便带脓血或黏液便。③大便变细、变形,排便费力。④时有排便感,却无大便解出。7.肺癌遗传危险度:★★国外研究机构对超过万名日本中老年人展开了长达13年的追踪调查,他们中共出现了791例肺癌。研究者将直系亲属有肺癌患者和没有肺癌患者的两组人进行对比,结果发现前者患病几率是后者的2倍。肺癌的遗传性在女性身上表现得尤为明显。防治原则肺癌的发生与吸烟密切相关,特别是那些有家族肺癌病史的人,一定要远离烟草和被动吸烟。如果出现刺激性咳嗽、痰血等症状,尤其是上述高危人群,应尽早找医生诊治。如果能早期发现并规范治疗,肺癌的治愈率可以达到70%。8.哮喘遗传危险度:★★★★★目前多数学者认为,哮喘发病的遗传因素大于环境因素。如果父母都有哮喘,其子女患哮喘的几率可高达60%;如果父母中有一人患有哮喘,子女患哮喘的可能性为20%;如果父母都没有哮喘,子女患哮喘的可能性只有6%左右。此外,如果家庭成员及其亲属患有过敏性疾病如过敏性鼻炎、皮肤过敏或食物、药物过敏等,也会增加后代患哮喘的可能性。防治原则成人哮喘多在儿童期发病,儿童期早治疗是减少成人期发病率的关键。有哮喘家族史者应避免各种引发哮喘的环境因素,如吸入各种过敏物质(过敏原)、呼吸道病毒和细菌感染、吸烟和空气污染等,这些因素在哮喘发病和加剧中起触发和推波助澜的作用。平时要做好居室、生活和工作环境的清洁卫生,戒烟,积极预防和及时治疗呼吸道感染等。9.抑郁症遗传危险度:★★★★★许多研究都发现抑郁症的发生与遗传因素有较密切的关系,抑郁症患者的亲属中患抑郁症的概率远高于一般人,约为10~30倍,而且血缘关系越近,患病概率越高。据国外报道,抑郁症患者亲属中患抑郁症的概率为:一级亲属(父母、同胞、子女)为14%,二级亲属(伯、叔、姑、姨、舅、祖父母或孙子女、甥侄)为%,三级亲属(堂、表兄妹)为%。防治原则抑郁症的防治应以早期发现、早期诊断、早期治疗为主。如果经常出现闷闷不乐、体重显著增加或减少、失眠或睡眠过多、坐立不安、注意力不集中、有轻生念头等现象,要及时去医院检查治疗。10.老年痴呆遗传危险度:★★★科学家在长期研究后发现,老年性痴呆是一种多基因遗传病。研究发现,父母或兄弟中有老年性痴呆症患者,患老年性痴呆症的可能性要比无家族史者高出4倍。防治原则如果有老年性痴呆家族遗传史的,50岁以后就应该进行检查,看有没有智力方面的障碍,以便及时采取一些措施进行治疗。除遗传因素外,教育程度低者易患老年痴呆,而接受过正规教育的人其发病年龄比未受过教育者推迟7~10年。此外,长期情绪抑郁、离群独居、文化水平和语言水平低、丧偶且不再婚、不参加社交活动、缺乏体力和脑力活动等也易致老年性痴呆症。以上各类遗传病发病率加起来约为30%,而且还有逐年增加的趋势。因此,不能再笼统他说遗传病只是一种罕见之症。预防遗传病患儿的降生,是提高我国人口素质的重要优生手段。绝大多数遗传病无法治愈。因为现代医学还不能改变已出生的人的基因,所以只要致病基因还在,就无法治愈。但是某些病可以通过不停地用药来缓解病情。[编辑本段]家族遗传病遗传性疾病是由于遗传物质改变而造成的疾病。遗传病具有先天性、家族性、终身性、遗传性的特点。遗传病的种类大致可分为三类:一、单基因病。单基因常常表现出功能性的改变,不能造出某种蛋白质,代谢功能紊乱,形成代谢性遗传病。单基因病又分为三种:1.显性遗传:父母一方有显性基因,一经传给下代就能发病,即有发病的代代,必然有发病的子代,而且世代相传,如多指,并指,原发性青光眼等。2.隐性遗传:如先天性聋哑,高度近视,白化病等,之所以称隐性遗传病,是因为患儿的双亲外表往往正常,但都是致病基因的携带者。3.性链锁遗传又称伴性遗传发病与性别有关,如血友病,其母亲是致病基因携带者。又如红绿色盲是一种交叉遗传儿子发病是来自母亲,是致病基因携带者,而女儿发病是由父亲而来,但男性的发病率要比女性高得多。二、多基因遗传:是由多种基因变化影响引起,是基因与性状的关系,人的性状如身长、体型、智力、肤色和血压等均为多基因遗传,还有唇裂、腭裂也是多基因遗传。此外多基因遗传受环境因素的影响较大,如哮喘病、精神分裂症等。三、染色体异常:由于染色体数目异常或排列位置异常等产生;最常见的如先天愚型,这种孩子面部愚钝,智力低下,两眼距离宽、斜视、伸舌样痴呆、通贯手、并常合并先天性心脏病。上述遗传病并非携带致病基因就肯定会发病。其实几乎所有的疾病都与基因有关系,也和环境有密切联系!遗传按生物体的照性状分,还可以分为质量性状和数量性状!所谓质量性状就是白种人和黄种人的差别,这主要是遗传决定的,受环境因数影响小。也就是男女的差别!数量性状即稻谷的重量,人的身高,颜色深浅等等,这些都叫数量性状。数量性状是多基因决定的,基因数一般不易测算,因为误差可以相差一个数量级。所以主要讲基因的总效应!数量性状受环境的影响非常大。可以说超过遗传因子!总之,绝大部分疾病是环境因子和遗传因子共同作用的结果![编辑本段]饮食治疗某些遗传病可通过控制饮食达到阻止疾病发生的目的,从而收到治疗效果。如苯丙酮尿症的发病机理是苯丙氨酸羟化酶缺陷,使苯丙氨酸和苯丙酮酸在体内堆积而致病,可出现患儿智力低下或成为白痴。可是如果诊断准确,在早期最好在出生后7-10天开始着手防治,在出生后3个月内,给患儿低苯丙氨酸饮食,如大米、大白菜、菠菜、马铃薯、羊肉等,则可促使婴儿正常生长发育。等到孩子长大上学时,再适当放宽对饮食的限制。又如,我国长江以南各省均有5%的人患遗传性葡萄糖6-磷酸脱氢酶缺乏症,临庆表现为溶血性贫血,严重时可危及生命。这类病人对蚕豆尤其敏感,进食蚕豆后即可引起急性溶血性贫血,故又称“蚕豆病”。对这类患者应严格禁食蚕豆及其制品。同时,这种病还可引起药物性溶血、感染性溶血和遗传性非球形细胞溶血性贫血等,故平时用药必须慎重。[编辑本段]药物治疗药物在遗传病的治疗中往往起一定的辅助作用,从而改善患者的病情,减少痛苦。主要是对症治疗,如服止痛剂以减轻病员疼痛。还可以改善机体代谢,如肝豆状核变性,主要是体内铜代谢障碍,使血内铜的水平升高,导致胎儿畸形。可以服用促进铜排泄的药物,同时限制食用含铜的食物,以保持体内铜的正常水平,而达到良好的治疗效果。还有些病如先天性低免疫球蛋白血症,可以注射免疫球蛋白制剂,以达到治疗的目的。[编辑本段]手术治疗手术矫治指采用手术切除某些器官或对某些具有形态缺陷的器官进行手术修补的方法。如球形红细胞增多症,由于遗传缺陷使患者的红细胞膜渗透脆性明显增高,红细胞呈球形,这种红细胞在通过脾脏的脾窦时极易被破坏而引起溶血性贫血。可以实施脾切除术,脾切除后虽然不能改变红细胞的异常形态,但却可以延长红细胞的寿命,获得治疗效果。对于多指、兔唇及外生殖器畸形等,可通过手术矫治。又如,狐臭也是一种遗传病,但只要将患者腋下分泌过旺的腺体剜掉,即可消除病患。基因疗法基因治疗遗传是一种根本的和有希望的方法。人类的遗传物质,也可以像“虾子向蚯蚓借眼睛”的故事一样,向别的生物借用。即向基因发生缺陷的细胞注入正常基因,以达到治疗目的。基因治疗说起来简单,可事实上是一个相当复杂的问题。首先必须从数十万基因中找出缺陷基因,同时必须制备出相应的正常基因,然后将正常基因转入细胞内替代缺陷基因,并能够进行正常的表达作用。此种治疗方法,目前还处在研究和探索阶段之中。值得特别提出的是,在基因疗法还没有彻底研究出来的现阶段,遗传病中能够用上述几种简单方法进行治疗的,毕竟只是少数,而且这类治疗只有治标的作用,即所谓“表现型治疗”,只能消除一代人的病痛,而对致病基因本身却丝毫未触及。那些致病基因将一如既往,按照固有规律传递给患者的子孙后代。[编辑本段]分析研究由于受精卵形成前或形成过程中遗传物质的改变造成的疾病。有人认为只有受父母遗传因素决定的疾病才是遗传病,这一认识不够全面。例如有一些染色体畸变并非由父母遗传因素决定,而是在受精卵形成过程中产生,习惯上染色体畸变都包括在遗传病的范畴内。还有人认为凡是受遗传因素影响的疾病都是遗传病,这一概念也不确切,因为在人类所有疾病中,除了少数几种(如外伤造成骨折)完全由环境因素所致,不受遗传因素影响外,几乎绝大多数疾病都是环境和遗传两方面因素互相作用的结果,只是两者影响疾病发生的程度可不相同。即使细菌感染、外伤后癫痫等环境因素十分明显的疾病,不同个体之间也存在着易感性的差异,而这种差异也是受遗传因素影响的,不可能把这些病都包括在遗传病的范畴之中。完全由遗传因素决定的疾病(A类,如21三体综合征)和完全由环境因素决定的疾病(D类, 如外伤性骨折)都是少数,而大多数人类疾病都居于B类和C类。B类指基本上由遗传因素决定,但需要环境中一定的诱因才发病,如苯丙酮酸尿症患儿在出生后摄入苯丙氨酸就会发病。 C类指遗传因素和环境因素都对发病起作用的疾病,如高血压病、感染等;但不同疾病的遗传度不同,即遗传因素影响越大,则遗传度就越高。所以从理论上来说, A、B、C等三类均属遗传病,但C类如感染、外伤后癫痫等在习惯上不包括在遗传病的范畴中。遗传病不同于先天性疾病,后者是指出生时就已表现出来的疾病。虽然不少遗传病在出生时就已表现出来,但也有些遗传病在出生时表现正常,而是在出生数日、数月,甚至数年、数十年后才开始逐渐表现出来,这显然不属于先天性疾病。另一方面,先天性疾病也并不都是遗传因素造成的,例如孕期母亲受放射线照射时所致的先天畸形,就不属于遗传病。遗传病也不同于家族性疾病。虽然有些由于同一个家族成员具有相同的遗传基础可表现遗传病的家族发病,但是不同的遗传病在亲代、子代之间的传递规律是复杂多样的,有些遗传病(如白化病等隐性遗传病)就可能没有家族史,另一方面,家族性疾病也可能由非遗传因素(如相同的生活条件)造成,如饮食中缺乏维生素 A使多个家族成员出现夜盲。过去认为遗传病是一个较罕见的疾病,但随着医学的发展和人民生活水平的提高,一些过去严重威胁人类健康的传染病、营养性疾病得以控制,而遗传病成为比较突出的问题。如英国1914年的一项儿童死因调查表明,非遗传性疾病(如感染、肿瘤等)占%,而遗传性疾病只占%,但到20世纪70年代后期,两类疾病各占50%。国内的情况也同样,1951年北京市儿童的死亡原因中,感染性疾病占重要地位,但在1974~1976年儿童死因分析中,先天畸形占全部死因的%,居首位,而在这些畸形中,属遗传病的达3~10名。另一方面,遗传病的病种非常多,随着生物学和医学的发展,近年发现新的遗传病更是层出不穷。表1 表明1958~1982年人类认识的单基因病的病种,至今已有4000种左右的遗传病被人们所认识。简史 18 世纪法国人莫佩尔蒂第一个对遗传病作了家系调查,他分析了白化病的遗传方式。1814年亚当斯发表有关临床疾病遗传性质的论文,这被认为是近代最早的一篇系统论述遗传病的文章。1908年.加罗德首次提出“先天代谢异常”的概念,将遗传与代谢联系起来,并认为尿酸尿症等先天代谢异常的遗传规律可以用孟德尔定律来解释,为医学遗传学作出了划时代的贡献

医学遗传学论文

遗传学是研究生物体遗传和变异的科学,遗传学是生物学的重要分支和核心学科,并且是生命科学最具活力的领域之一。以下是我整理的医学遗传学论文,欢迎阅读。

1 医学遗传学课程特点

医学遗传学是医学与遗传学相结合的一门边缘学科,是遗传学知识在医学领域中的应用。它以生物、生化、病理、生理等学科的理论为基础,研究人类疾病的发生发展与遗传因素的关系,提供诊治、预防遗传病的科学依据及手段,从而改善人类健康素质。具有内容繁杂、实践性强、多学科交叉等特点。医学遗传学课程设置的内容存在递进关系、相辅相成,因此设置综合考试来考查学生对所学知识的综合运用能力是非常有必要的。

2 改革医学遗传学考试方式的必要性

传统教育理念与现代教育理念的一个重要区别是采取应试教育,还是素质教育。传统考试重识记轻能力, 往往局限于教材, 多以记忆性、上课重点为主。存在问题一是考试方式单一。二是“一考定终生”的弊端,不能客观反映每一位学生真实的学习的质量、效果和能力,带有某种投机性和偶然性,导致部分学生平时松,考前“临时抱佛脚”取得合格的分数,掩盖了教学中存在的问题,不利于教学质量的改进和提高。有些学生考试作弊,损害了考试的公平性,还对学习风气造成不良影响。另外学生考前心理负担过重,尤其是考前1 周, 学生不眠不休, 影响身心健康, 不利于创新型人才的培养。

医学遗传学已从单纯的理论型学科向理论与实践相结合的综合性学科发展,为培养复合型人才,必须探索一种更加系统、科学的考试方式,用于强化考试在教学过程中所起的评定、诊断作用,强化考试的检测功能和反馈功能,强化考试对师生的激励作用,从而培养学生的综合能力,激发学生的学习热情,避免重结果轻能力的倾向。

3 医学遗传学课程考试制度改革的主要思路

改革考试形式 在考核方法的选择上,采用灵活多样的考试方式,构成“形成性评价与终结性评价相结合”的考核与评价体系,即理论与实践相结合,技能与态度相结合,笔试、口试与操作相结合,开卷与闭卷相结合。因此将整个考试结构设置为:笔试(60%)、口试(15%)、操作(20%)、写作(5%)4个部分。

笔试包括章节性考试和期终考试的笔试成绩。教师可根据需要在某个章节学习结束后进行一次笔试测验,组成一个形成性考核的笔试成绩,这个成绩再与期终考试成绩结合起来,作为本部分成绩。

口试包括课堂提问、课堂表现、课堂纪律和课堂病例讨论的成绩。课堂提问反映学生自主学习的情况,能够检验课前预习、课堂学习、课后复习3 个方面的学习效果,易实施,操作性强,突出学习的过程,培养学生良好的.学习习惯,避免不良风气。课堂表现、课堂纪律反映学生的学习态度。课堂病例讨论, 主要讨论典型病例, 目的是让学生了解病例讨论的过程、步骤及如何运用所学知识分析问题、解决问题,以自由编组,随机抽题,口头回答的方式进行考核,有助于培养和提高学生的合作能力、参与能力、自主学习能力、自我管理能力和创新能力。

操作包括实训操作和实验报告的成绩。在整个实验课学习过程中,提供给每个学生实训操作机会,教师作为督导,从认真态度、严谨作风、职业素质、团队意识等方面进行考核,再根据完成实验报告的质量,评定每次实验成绩,取平均值作为此部分的成绩。

写作主要是指撰写小综述、小论文、翻译文献的成绩。初步培养学生的科研论文写作能力,从学生的自主态度、参与程度、完成质量、论文答辩水平等方面评定成绩。

转变教育思想观念 高等教育的目的是传授知识和培养学生的能力,由注重考核书本知识向注重学生知识、能力、素质综合考核转变;由笔试闭卷考试为主向灵活多样的考试方法转变;由重视一次性终结考试向注重全程性考核转变;传统教学以“传授知识为主”向现代教学以“培养能力为主”的转变,建立与之相适应的内容广泛、形式多样的考试考核制度。

鼓励学生参与思想政治教育讲解 教师结合学科特点和内容有意识、有目的、自觉地渗透爱国主义教育、职业道德教育、辩证唯物主义教育等思想政治教育。让学生在接受理论知识和提高技能的同时,养成良好高尚的道德风范。同时鼓励学生查找与本学科相关思想政治教育资料,在课堂上向大家讲解所受人生观、价值观的启迪。

注重考试内容的选择,提高学生综合素质 在考核内容的选择上,以“知识点上遵循教学大纲,但应用上不拘泥于教学大纲”为原则,在试题设计上,由注重知识向注重能力转变,增加应用题和能力题,考核应能充分反映学生掌握基本理论、基本技能的情况以及分析问题、解决问题和创新的能力,尽可能多一些综合性思考题、分析题、应用题,甚至没有标准答案的考试内容。考试内容应突出基础性、创新性和实践性。

调动教师积极性,促进教研活动 教师是考试模式改革的实施者,对考试改革的认识程度、对考试改革的积极性在考试改革过程中起着至关重要的作用。因此教师要不断更新教学内容、教学理念、教学方法、教学手段,付出更多的时间和精力开展教研活动,调动自身积极性。

总之,考试不仅是实施素质教育的内在要求, 也是推进素质教育实施的动力。构建多种形式的考试体系, 有利于对学生明确课程目标、巩固所学知识、检验学习效果、培养综合能力等方面具有积极作用, 有利于督促教师根据教学目标选择教学方法、调整教学内容, 强化学生的学习动机。

参 考 文 献

[1] 彭峰. 我国高校考试制度改革的若干思考.时代教育,2008,6:106107.

[2] 王海涛.改革高校考试模式,培养创新型人才.辽宁教育行政学院学报,2008,(11):162 163.

  • 索引序列
  • 关于人类遗传病论文题目
  • 关于人类遗传病论文的题目
  • 关于人类遗传病论文
  • 人类遗传病相关论文题目
  • 关于人类遗传病的论文
  • 返回顶部