大型桥梁运架设备安装中的直线度测量 精测公司 李学仕 【摘 要】 本文介绍了杭州湾跨海大桥50m预制箱梁运架设备安装过程中,应用导线法测量设备构件直线度的方法。 【关键词】 导线法 直线度 安装测量 杭州湾跨海大桥 杭州湾跨海大桥(全长36km)50m预制箱梁的制、运、架大型设备统称五大设备,其尺寸庞大, 结构复杂,安装精度要求高,均采用工厂制造构件,运输到现场再安装的方式;其中长大构件组装连接后的直线度(保持各点在一条直线上,不产生平面弯曲)是控制设备安装精度的一项重要指标,需要在安装过程中不断监控测量,及时提供实时数据,以指导安装施工。一般情况下,测量直线可在直线的端头置镜,瞄准直线方向,检查直线上的点,即可及时知道直线度情况;如果在直线上因地形条件限制而无法架设测量仪器时,如何快速测量直线度和保证测量精度呢?设备安装应属工业安装测量问题,但桥梁运架设备须在施工现场安装,我们采用工程测量方法解决了这一问题。本文介绍在杭州湾跨海大桥50m箱梁运架设备安装过程中应用导线法测量设备构件直线度的方法。 1 实现原理 图 1 测量直线度就是确定测点到直线的偏移距离。在待测直线外任意P点置镜,选择待测直线上A、B两点(可选择两端点)作为直线控制点(如图1),建立以A点为原点,AB连线为X轴正向的坐标系(简称A坐标系),易知在该坐标系下的Y坐标就是距AB直线方向的偏离值。 利用全站仪先测量出直线控制点A、B到置镜点P的距离S1、S2和角度a,即可计算出在上述坐标系下的P点坐标和PB或PA的方位;然后在全站仪中设置测站坐标和方位(定位与定向),即可直接测量直线上其他点的坐标,以直观分析各测点相对于直线AB的偏离程度(直线度)。 P点坐标计算方法,这里介绍利用导线法计算。首先建立一个临时坐标系(简称P坐标系),以P为坐标原点,PA连线为X轴的正向,由测量的距离和角度计算出A、B的临时坐标以及AB、PB、PA的方位,然后根据方位差计算PA、PB在A坐标系中的方位以及P点的坐标。 在上述临时坐标系中:P点的坐标(0,0),PA的方位=0,A点的坐标(S1,0);PB的方位=a,B点的坐标[S2×cosa,S2×sina];AB的方位=w,由AB坐标反算得到。 在A坐标系中,AB的方位=0,则根据P坐标系中的方位关系得到:PA的方位=-w,PB的方位=a-w,从而P点的坐标X=-S1×cosw,Y=S1×sinw。 在作业现场上述计算可以利用程序型计算器计算快速得到,如使用Casio fx4500计算的代码 为:EFA (E=S1,F=S2,A=a) Pol(Fcos(A)-E,Fsin(A))n(AB的距离S) n(PB的方位) X=-Ecos(W)n(P点的坐标) Y=Esin(W)n 2 精度分析 由上述建立的坐标系可知,直线度的误差即测量中主要看观测点Y坐标误差。 根据公式Y=Yp+S×sinα,可知主要误差来源是距离误差、方向误差和定向误差。观测时,采 用配套小棱镜,直接对中观测目标,对中误差极小;观测距离不长,一般在60m以内,同一气象条件下,测距精度较高;同时很容易觇准目标,方向观测精度较高。在仅顾及观测误差影响的情况下,Y的中误差:m2y=sin2αm2s+S2cos2αm2α若设:ms=1mm,mα=4〃,S=60m,上式若取m2y=m2s+S2m2α,可以得出my最大误差也不过1•5mm。 杭州湾跨海大桥50m箱梁运架设备的直线度、铅直度安装精度一般要求达到5mm,此为极限 误差,则安装总中误差为2•5mm,包括安装和测量误差。根据测量误差取安装误差的1/ 2倍的原则,得到测量误差为安装总误差的1/ 3倍,即测量误差为2•5/ 3=1•4mm。可见上述测量方法是可以达到测量要求的。 3 操作方法 在待测直线外适当地点(大致在直线中间部位)架设好仪器;全站仪照准A点,方向置零,测量 距离S1;照准B点,测量角度a和距离S2,保持仪器不动;利用计算器计算A坐标系中P点的坐标和PB的方位,输入到全站仪中;开始从B到A测量直线上的点坐标并记录数据。 4 测量应用 (1) LGB1600架桥机 LGB1600架桥机主要结构是其沿桥梁方向左右两大机臂,均为110m长的矩形钢框架梁(截面尺寸为宽2•2m×高3•2m)。两机臂由前后两端钢横梁联系。每条机臂分为10段,长度分别为11•88m×9+4•3m,各段之间用钢板螺栓连接。 拼装时,先拼装为3大段(3节+3节+4节),再将3大段依次连接起来。构件体形庞大,各大段拼装以及三大段整体拼装时会产生线性扭曲,为使结构按设计精度安装(直线度要求5mm以内),需要在连接螺栓进行初拧前、终拧前以及终拧后对机臂进行直线度测量,而更多的是在安装调整过程中进行实时测量,要求较快测量出数据。机臂尺寸较大,在大臂外没有位置架设测量仪器,但可架设在机臂顶面,采用导线法建立以大臂纵向为X轴的坐标系,根据测量得出的Y坐标,可方便地看出大臂的弯折情况。终拧后的测量结果数据将作为安装竣工数据进行构件空间结构模拟演算。 在大臂顶面有两股运梁小车走行轨道,中心间距为2m(制造精度较高)。同时测量两股轨道对 应点,由Y坐标差可检验测量精度。从测量结果看,间距最大相差2mm,从而验证了用该方法测量的结果是可靠的。 提梁机台车主梁的上下弦杆直线度测量 ML800提梁机 ML800提梁机(见图3)由主梁、刚性支腿和柔性支腿以及走行小车等组成,主梁为钢桁架,其尺寸为长64m×宽4•7m×高8•5m。上下弦杆均由六段截面为工字型的钢构件螺栓连接组成,安装时,需要对各弦杆各段间的连接点进行直线度测量(直线度要求为5mm)。建立以主梁纵向为X轴的坐标系,用导线法测量各节点的坐标,可以方便的得出各节点连线的直线度情况。 (3)提梁机台车主梁上下弦杆连接立柱垂直度测量 提梁机台车主梁上下弦杆用斜撑和立柱连接,安装时需要对立柱相对于主梁纵横向的倾斜进 行测量(上下对应点在平面上的投影纵横向距离要求5mm内)。使用导线法,同样建立以主梁纵向为X轴的坐标系,分别测量立柱的上、下端对应位置的平面坐标,比较纵横坐标差值,可以迅速得到每根立柱的倾斜状态,以及各立柱之间的相互倾斜状态,及时安装调整到正确位置。 (4)提梁机刚性支腿安装测量 提梁机左侧的刚性支腿(高度27•3m)在安装时平放在地面上如图4所示,C、D、E、F处于同一个平面内(连线尺寸为4m×7•5m),与主梁安装好以后在同一水平面,均为带螺孔的钢板与主梁对应螺拴钢板对位连接;与地面轨道走行台车连接端的A、B(距离15m)为带销孔的钢板,与走行台车上对应销子相连接,安装后处于水平,与CDEF平行。安装时平放地面,需要控制AB与CD及CDEF平行,且CDEF钢板处于同一平面内(此时为竖直面)。 同样使用导线法测量,建立以A为原点、AB为X轴的坐标系,测量C、D、E、F的坐标,即可知道C、D、E、F是否处于同一竖直面内(据Y坐标)以及是否与AB平行。 5 结语 应用导线法测量大型设备的直线度、铅直度,可以方便、快速的获得准确测量结果,及时为现场安装施工提供可靠数据,为杭州湾跨海大桥50m箱梁五大设备顺利安装投入使用、确保架梁工期赢得了宝贵时间。 参 考 文 献 1 李青岳、陈永奇•工程测量学•测绘出版社;1995•5
本课题的目的及意义:毕业设计的目的在于培养毕业生的综合能力,它是桥梁工程专业本科培养计划中最后的一个主要教学环节,也是最重要的综合性实践教学环节,和其它教学环节不同,毕业设计要求学生关注学术动态,充分的了解国内外桥梁设计的发展现状及趋势,并灵活运用大学所学的各门基础课和专业课知识,结合相关设计规范,在指导老师的指导下,独立的完成一个专业课题的设计工作,解决与之有关的所有问题,熟悉相关设计规范、手册、标准图以及工程实践中常用的方法。具有实践性、综合性强的显著特点。毕业设计学生独立系统的完成一项工程设计,因而对培养学生的综合素质、增强工程意识和创新能力具有其他教学环节无法取代的重要作用。通过毕业设计这一时间较长的教学环节,学生独立分析问题、解决问题的能力以及实践动手能力都会有很大的提高,还可以培养土木工程专业本科毕业生综合应用所学基础课、技术基础课及专业课知识和相关技能,解决具体问题的能力。以达到具备初步专业工程人员的水平,为将来走向工作岗位打下良好的基础。国内外研究现状分析:预应力混凝土连续梁桥是预应力桥梁中的一种,它具有整体性能好、结构刚度大、变形小、抗震性能好,特别是主梁变形挠曲线平缓,桥面伸缩缝少,行车舒适等优点。由于悬臂施工方法的应用,连续梁在预应力混凝土结构中有了飞速的发展。60年代初期在中等跨径预应力混凝土连续梁中,应用了逐跨架设法与顶推法;60年代中期在德国莱茵河建成的本多夫(Bendorf)桥,采用了悬臂浇筑法。随着悬臂浇筑施工法和悬臂拼装施工法的不断改进、完善和推广应用,在跨度为40—200米范围内的桥梁中,连续梁桥逐步占据了主要地位。目前,无论是城市桥梁、高架道路、山谷高架栈桥,还是跨河大桥,预应力混凝土连续梁都发挥了其独特的优势,成为优胜方案。我国自50年代中期开始修建预应力混凝土梁桥,至今已有40多年的历史,比欧洲起步晚,但近对年来发展迅速,在预应力混凝土桥梁的设计、结构分析、试验研究、预应力材料及工艺设备、施工工艺等方面日新月异,预应力混凝土梁桥的设计技术与施工技术都已达到相当高的水平。近20年来,我国已建成的具有代表意义的连续梁桥有跨径90m的哈尔滨松花江大桥、跨径120m的湖南常德沅水大桥、主跨125m的宜昌乐天溪桥、跨径154m的云南六库怒江大桥等。虽然我国的预应力混凝土连续梁在不断地发展,然而与国际先进水平仍存在一定差距。想要赶超国际先进水平,必须要解决好下面几个问题:1.发展大吨位的锚固张拉体系,避免配束过多而增大箱梁构造尺寸,否则混凝土保护层难以保证,密集的预应力管道与普通钢筋层层迭置又使混凝土质量难以提高。2.在一切适宜的桥址,设计与修建墩梁固结的连续刚构体系,尽可能不采用养护调换不易的大吨位支座。3.充分发挥三向预应力的优点,采用长悬臂顶板的单箱截面,既可节约材料减轻结构自重,又可充分利用悬臂施工方法的特点加快施工进度。另外,在设计预应力连续梁桥时,技术经济指标也是一个很关键的因素,它是设计方案合理性与经济性的标志。目前,各国都以每平方米桥面的三材(混凝土、预应力钢筋、普通钢筋)用量与每平方米桥面造价来表示预应力混凝土桥梁的技术经济指标。但是,桥梁的技术经济指标的研究与分析是一项非常复杂的工作,三材指标和造价指标与很多因素有关,例如:桥址、水文地质、能源供给、材料供应、运输、通航、规划、建筑等地点条件;施工现代化、制品工业化、劳动力和材料价格、机械工业基础等全国基建条件。同时,一座桥的设计方案完成后,造价指标不能仅仅反应了投资额的大小,而是还应该包括整个使用期限内的养护、维修等运营费用在内。通过连续梁、T型刚构、连续刚构等箱形截面上部结构的比较可以发现:连续刚构体系的技术经济指标较高。因此,从这个角度来看,连续刚构也是未来连续体系的发展方向之一。总而言之,一座桥的设计包含许多考虑因素,在具体设计中,要求设计人员综合各种因素,作分析、判断,做出可行的最佳方案。2.本课题的任务、重点内容、实现途径课题任务: 课题要求根据原始设计资料按规定进度完成重庆市大悦大桥的设计工作。主要有以下三方面的工作。第一,完成桥梁的方案比选及总体设计。针对给定的原始资料,对桥位提出三个可行性方案,然后进行技术、经济分析比较,选出推荐方案,并论证推荐方案的优缺点。第二,进行结构设计计算和验算。针对最终选定的设计方案,完成以下内容:1、上部结构尺寸拟定;2、全桥节段划分;3、全梁截面特性计算;4、恒载和活载内力计算;5、其他因素引起的内力计算;6、内力组合;7、配筋计算;8、预应力束的布置及相关计算;9、抗裂性验算;10、强度及应力验算;11、挠度及预拱度计算。 第三,施工组织设计。首先要确定施工方案,然后完成简单的施工组织设计。设计完成后要求提交计算书和图纸。图纸统一采用A3或A3加长纸张,其中尺规绘图占40%,计算机绘图占60%,图纸必须符合国家技术标准规范,图表整洁,布局合理。计算书应文字通顺,用A4纸单面打印或书写。(50页以上的双面打印或书写)。重点内容: 在我国,安全、经济、适用、美观是桥梁设计中的主要考虑因素,安全尤为 重要。所以在本设计课题中,重点要做以下两方面的内容: 1、桥梁方案比选及总体设计。2、 结构设计计算和验算。解决途径: 进行桥梁方案比选和总体设计时,绘制各桥型方案的立面图、剖面图及平面图。其中立面图与平面图的比例尺应相同,可采用1:1000~1:500;对于剖面图,为清晰起见可采用1:200~1:150。计算书中列出桥型方案比选表。结构分析计算采用电算和手算相结合的方式。电算时,提供输入数据(全桥结构计算图示、单元类型及其划分、边界条件说明、关键数据输入说明等)采用相关软件计算。并绘制主梁一般构造及钢筋布置图,预应力钢束布置图。 3.预计可能遇到的困难,提出解决问题的方法和措施可能的困难:本次设计是我们第一次对某座桥梁进行全面的设计,设计过程包括了桥梁外观、桥梁结构和桥梁施工三个方面。此次设计的最大困难就是经验不足。1.由于没有设计经验,截面尺寸的拟定很难合适的把握。2.设计中的电算部分,由于对软件的熟悉成度不够,可能出现计算错误。3.对规范不够熟悉,设计中有可能出现不符合常规的设计操作。措施和方法:按时并保质保量的完成毕业设计,关键是要按照进度和老师的指导开展工作。因为设计经验匮乏,所遇设计过程中必须要保持与老师的联系,经常与老师进行沟通,并积极搜集与专业相关的资料,例如规范、学术论文、设计案例等。做到对设计任务的全面系统把握。1.广泛阅读,积极参照国内外的成功桥梁设计案例,在进行综合分析的基础上,提出当前设计课题的解决方案。2.积极与指导老师沟通,认真听取老师意见。3.对于设计中所需的桥梁计算软件,要勤于动手,做到能够灵活操作。本文来自:中国范文网【 】 详细出处参考:
道路 桥梁浅论梁【bridge】指的是为道路跨越天然或人工障碍物而修建的建筑物。桥梁一般讲由五大部件和五小部件组成,五大部件是指桥梁承受汽车或其他车辆运输荷载的桥跨上部结构与下部结构,是桥梁结构安全的保证.包括(1)桥跨结构(或称桥孔结构.上部结构)、(2)支座系统、(3)桥墩、(4)桥台、(5)墩台基础.五小部件是指直接与桥梁服务功能有关的部件,过去称为桥面构造.包括(1)桥面铺装、(2)防排水系统、(3)栏杆、(4)伸缩缝、(5)灯光照明.桥梁的分类:按用途分为公路桥、公铁两用桥、人行桥、机耕桥、过水桥等。按跨径大小和多跨总长分为小桥、中桥、大桥、特大桥。按结构分为梁式桥,拱桥,钢架桥,缆索承重桥(斜拉桥和悬索桥)四中基本体系,此外还有组合体系桥按行车道位置分为上承式桥、中承式桥、下承式桥按使用年限可分为永久性桥、半永久性桥、临时桥按材料类型分为木桥、圬工桥、钢筋砼桥、预应力桥、钢桥桥梁分类 多孔跨径总长L(米) 单孔跨径L0(米)特大桥 L≥500 L0≥100大桥 L≥100 L0≥40中桥 30 高速公路设计中降低工程造价的探讨摘要:分析了山西省高速公路工程造价偏高的原因,指出公路勘察设计是公路建设过程中的重要环节,对于公路建设质量和工程投资起控制作用,从设计角度探讨了高速公路降低工程造价的措施,从而解决建设资金不足的问题。关键词:高速公路,设计,工程造价,原因近年来,随着国家高速公路网的全面实施,高速公路已全面向山岭重丘区延伸,高速公路平均每千米造价超过了6 000万元,建设资金不足的问题在山岭重丘区的山西尤为突出。山西省高速公路工程造价偏高既存在客观原因,也有主观原因。客观原因主要有:1)山西省大部分为山岭重丘区,沟壑错综复杂,桥梁、隧道数量多;2)煤矿采空区多,处理费用偏高;3)地方路网完善,互通立交、跨线桥数量多;4)高速公路征用耕地数量多,征地费用偏高;5)地方材料资源缺乏,砂、石材料单价偏高。主观原因主要有:1)为了项目尽早开工,没有给设计部门合理的设计周期,甚至边设计边施工,造成勘测和设计深度不足,变更地方较多;2)地方规划变化较快,设计变更多,使工程量不断增加;3)招标文件不规范,工程量清单内容不全面以及合同条款不严密,管理上出现漏洞;4)设计人员存在保质量轻造价的思想。客观原因是由自然条件所决定的,基本上是不可避免的,而主观原因可以通过人的努力,采取有效的措施加以克服或减少。公路勘察设计是公路建设过程中的重要环节,是工程的灵魂,对于公路建设质量、工程投资起控制作用。如何控制高速公路工程造价,合理利用好每一分钱,就要从设计做起。设计中降低工程造价的主要措施如下:1)路线:改变落后的设计理念,深刻理解规范的内涵,灵活运用技术指标,加深路线方案的比选深度。在满足公路功能,保持既有路网完整,群众出行方便的情况下,合理降低路基填土高度,减少借方和占地。控制好标高,达到路基土石方填挖平衡,总量最少,是山区公路设计的要点,山区公路的设计关键还在于平纵指标取值及均衡性。灵活运用技术指标是设计的出发点,是保护环境、节约投资的基础。在20世纪80年代~90年代中期,高速公路建设主要集中在平原区。这一时期,公路勘察设计指导思想主要以“快速、安全、经济”为原则,强调线形舒展,平纵组合协调合理,行车舒适,视觉效果良好。片面强调采用高标准、高指标,使得建成的高速公路路基普遍偏高,不仅过多占用了宝贵的土地资源,景观效果也不理想。21世纪初,平原区公路建设提出了尽量降低路基高度的低路堤设计原则,同期山区也开始大量修建高速公路,面对山区独特复杂的自然条件,设计人员仍采用了平原区设计思想,强调较高的技术标准,出现了大量的高填深挖路基,不仅破坏了区域的自然环境,影响公路景观,而且诱发了大量地质灾害,直接影响道路的正常运营,同时增加了工程造价。2)路基:路基设计应作为总体设计的主要及重点组成部分,主动参与总体设计,从源头控制影响造价的主要因素。尽可能降低平原微丘区的路堤高度,合理确定山岭重丘区的高填深挖路基;路基断面形式应适应地形特点,整体式路基适应平原区;山岭区的分离式路基可最大利用路线走廊内的空间资源,应提倡在山区路线设计时对每个方向进行单独的线形设计,或分离、错布车道;边坡设计应在边坡自身稳定的原则下进行,并应注重动态设计、信息化施工;边沟等根据排水需要设计尺寸,根据安全冲刷及美观要求设置防护类型;绿化防护是利用植草后的防冲刷功能,追求视觉效果的防护形式,土质边坡应提倡植物防护或不防护,对稳定的岩石边坡可采用自然裸露开挖形式;软土地基处理应从考虑软土地基对公路路基的危害程度出发,在沉降允许范围内,尽量利用时间来达到处理要求,少做或不做地下工程,并应注重沉降、稳定的观察工作,加强软基处理的动态设计、信息化施工;滑坡防治必须明确滑坡的可知性和可治性,为路线避绕或治理滑坡作出决策。3)桥梁:桥梁作为跨越江、河、湖泊、海峡及沟谷的构造物,对保障路网畅通起着不可替代的作用,它是路网建设中的关键节点。桥梁造价远远高于路基工程,特别是高速公路向山区发展后,出现大量的桥涵构造物,有效控制投资规模,显得十分迫切。特大、大桥的桥位是路线布设的重要控制点,桥位布设不宜过分强调“桥位选择应服从于路线”的原则,尽量避免出现大量高墩、大跨及弯坡斜桥,以减小桥梁工程规模及技术难度。桥型方案选择要坚持“安全、适用、经济、美观、便于施工及养护”的设计原则,应进行多方案比选。结构设计采用的计算方法要可靠,尺寸选择要合理,钢筋直径的选择及间距布置要充分满足结构受力的要求。重视施工方案的设计及桥梁方案与施工方案的结合,避免因施工方案选择不合理造成施工费用增加。4)隧道:公路隧道有别于地面工程,受地形地质条件影响大,隧道设计应把握好各阶段地质勘察重点与工作深度,趋利避害,准确划分围岩类别,并把地质超前预报与围岩监控量测作为一道工序纳入设计文件中。结合地形、地质条件、洞外接线及构造物布置情况,遵循“早进晚出”的原则,合理选择洞口位置,洞门设计应安全、简洁、实用、少刷坡、少破坏洞口自然环境。隧道衬砌横断面与结构形式应合理、有效适应建设条件,满足耐久性要求,一般采用复合式衬砌结构,并采取必要的辅助施工措施,尽可能采用标准化预设计。隧道内排水设计应从方案设计、材料选择、施工与维修等方面统筹考虑、因地制宜、综合治理,注重可维护性,当可能造成水土资源流失,或造成地面结构损坏时,应采取“以堵为主,限量排放”的措施。隧道内机电设计应结合实际交通情况进行分析,机电设施应规模适中,注意安全与节能,一次规划,分期实施,逐步完善。5)互通式立交:互通式立交属大型构造物,建设费用在总造价中占相当的比例,特别是枢纽互通所占的比重更大,设计中节省投资的意义很大。互通设计中应重视路网调查,掌握路网规划,避免由于路网规划发生变化,导致互通立交方案不合理。设计中应重视路线方案与互通方案的综合比选,处理好主线、匝道、被交路相互间的交叉关系。尽可能采用规模小、造价低的“瘦身”互通立交方案,尤其是在山区,地质条件复杂,不同位置设置造价相差很大,因此应加强互通方案比选。在满足通行能力的情况下,匝道设计速度应根据交通量确定,不宜太高,以减小匝道规模。参考文献:[1]交通部公路司.降低造价公路设计指南[M].北京:人民交通出版社,2005.[2]交通部公路司.新理念公路设计指南[M].北京:人民交通出版社,2005.[3]陈根生.工程项目设计的投资控制[J].山西建筑,2007,33(10):277-278. 研究性学习报告 课题:桥梁的研究 学校: 班级: 姓名: 研究时间: 一、中国桥梁五十年回眸 二、桥梁名人 李 春 茅以升 林同炎 邓文中 李国豪 林元培 冯泉钧 三、桥梁知识点滴 1、桥梁的分类 按使用性分为公路桥、公铁两用桥、人行桥、机耕桥、过水桥等。 按跨径大小和多跨总长分为小桥、中桥、大桥、特大桥。 桥梁分类多孔跨径总长L(米)单孔跨径L0(米 特大桥L≥500L0≥100 大桥L≥100L0≥40 中桥30 小桥8≤L≤3005< L0<20 涵洞L<8L0<5 按行车道位置分为上承式桥、中承式桥、下承式桥。 按承重构件受力情况可分为梁桥、板桥、拱桥、钢结构桥、吊桥、组合体系桥(斜拉桥、悬索桥)。 按使用年限可分为永久性桥、半永久性桥、临时桥。 按材料类型分为木桥、圬工桥、钢筋砼桥、预应力桥、钢桥。 2、桥梁结构知识 一.桥梁的组成部分与各部分的作用 根树干架在两岸就形成了一座最简单的单孔独木桥。 其所承受的重力(竖直的)或外力(竖直的或水平的),叫做荷载。 树干作为梁,起承受重力的作用,在桥梁上的学名就叫做承重结构。 二.上部结构 近代桥梁由于所承受的载重和跨度都比较大,结构就比上面说的要复杂一点。 拿上部结构来说,如果承重结构是梁,就叫做主梁,可以用钢(钢板栗、钢箱梁、铜街梁)、钢筋混凝土(跨度不大时)或预应力混凝土做成。 承重结构如果是拱,就叫做主拱(多于一片拱时拱肋);如果是悬索,就叫做主索或大缆。 桥面设在承重结构上方的叫做上承式桥;桥面设在承重结构下方的叫做下承式桥(在两片(或数片)主梁之间用纵向的及横向的杆件,将两片很薄的主梁联成一个协性较大的空间结构,以抵抗横向的及纵向的力(风力、车辆摇摆力、线路在曲线上时的离心力等)。 这些联结杆件形成一个联结系统,叫做联结系。 于是上部结构便扩充为四个部分,即:1.桥面;2.桥道结构;3.承重结构及4.联结系。 三.下部结构 荷载是通过上部结构的承重结构传递至下部结构的墩台顶面的。 为了使上部结构与下部结构的受力明确(在支点处力的作用位置明确),以便进行精确的力学计算,同时为了上部结构与下部结构之间的连接可靠,必须在上、下部结构之间有一个保证力的作用位置明确并且连接牢固的支点构造,这个支点构造就叫做支座。 对于梁式桥来说,由于荷载和温度的作用,梁都会发生变形。 这种变形在支座处有两种:一种是梁弯曲时的转动变形;一种是梁伸缩时的移动变形。 既允许梁作伸缩变形又允许梁作转动变形的支座叫活动支座;只允许梁作转动变形而不能作伸缩变形的支座叫固定支座。 每根梁只能有一个固定支座,其余的均为活动支座 桥墩与桥台一般用砖、石砌筑或混凝土灌筑而成,在旱地上有时可用钢做成。 承受墩台底部压力的土壤或岩石叫做地基。 如果地基具有设计需要的足够的承载力,那么就可将墩台身的底面根据地基承载力的大小和墩台稳定的需要适当扩大,直接支承在距地面深度不大的地基上。 这个扩大了的部分就叫做扩大基础或浅基础。 如果地基浅层的承载力不足以承受墩台身传下的压力,则要将基础下降到一定的深度,直到满足承载力的需要为止。 下降的方法一类叫沉井,一类叫沉桩。 沉井与沉桩统称深基础。 深基础与浅基础在受力方面的不同之处在于:浅基础只靠基础底部面积传递压力;深基础则除了依靠沉井或桩尖的底部面积将压力传递给地基以外,还依靠井壁和极壁与土层间的摩阻力,将一部分荷载传至地基。 所以深基础的承载能力要比浅基础为大。 这样一来,桥梁的下部结构通常就由三个部分组成:1.支座;2. 墩台;3.基础。 桥梁结构:拱桥式 在竖直荷载作用下,作为承重结构的拱肋主要承受压力。 拱桥的支座则不但要承受竖直方向的力,还要承受水平方向的力。 因此拱桥对基础与地基的要求比梁桥要高。 下图分别表示上承式拱桥(桥面在拱肋的上方)、中承式拱桥(桥面一部分在拱肋上方,一部分在拱助下方)与下承式拱桥(桥面在拱肋下方)。 仅供人、言行走的拱桥可以把桥面直接铺在拱肋上。 而通行现代交通工具的拱桥,桥面必须保持一定的平直度,不能直接铺在曲线形的拱肋上,因此要通过立柱或吊杆将桥面间接支承在拱肋上。 下承式拱桥可做成系杆拱,即在拱脚处用一报称为系杆的纵向水平受拉杆件将两拱脚连接起来。 此时作用于支座上的水平推力就由系杆来承受,支座不再承受水平方向的力。 这样做可以减轻地基承受的荷载,特别是在地质状况不良时。 桥梁结构:斜拉桥 斜拉桥日文称"斜张桥",德文称"斜索桥",英文称"拉索桥(Cable Stayed Bridge)"。 将梁用若干根斜拉索拉在塔在上,便形成斜拉桥。 与多孔梁桥对照起来看,一根斜拉索就是代替一个桥墩的(弹性)支点,从而增大了桥梁的跨度。 斜拉桥这种结构型式古已有之。 但是由于斜拉索中所受的力很难计算和很难控制,所以一直没有得到发展和广泛应用。 直到本世纪中,由于电子计算机的出现,解决了索力计算难的问题,以及调整装置的完善,解决了索力的控制问题,使得斜拉桥成为近50年内发展最快,应用日广的一种桥型。 下承式拱桥可做成系杆拱,即在拱脚处用一报称为系杆的纵向水平受拉杆件将两拱脚连接起来。 此时作用于支座上的水平推力就由系杆来承受,支座不再承受水平方向的力。 这样做可以减轻地基承受的荷载,特别是在地质状况不良时。 桥梁结构: 梁桥式 在竖直荷载作用下,梁的截面只承受弯短,支座只承受竖直方向的力。 多孔架桥的梁在桥墩上不连续的称为简支梁;在桥墩上连续的称为连续梁;在桥墩上连续,在桥孔内中断,线路在桥孔内过渡到另一根梁上的称为悬臂梁。 支承在悬臂上的简支架称为挂梁;伸出有悬臂的梁称为锚梁。 架式桥的梁身可以做成实腹的,也可以做成空腹的(称为桁梁)。 3、跨线桥桥型设计 随着我国公路交通事业的发展,近年来互通式立交桥和跨线桥越来越多。 这些立交桥和跨线桥不仅是公路交通的重要组成部分,而且已经成为现代的标志性建筑。 一个好的桥型设计,能使立交桥在发挥其自身通行能力的同时,体现出对周围环境的美化作用,有的甚至被看作现代建筑中的艺术品。 因而在选择桥型时,既要考虑实施的可行性,符合经济适用的原则;同时,又要考虑建筑造型艺术,满足美观要求。 这一点已经被当今越来越多的设计者所重视,并且成为现代工程设计的一个重要特征。 本文结合笔者对“桥南村”跨线桥的设计,提出应该在适用的基础上,对结构进行美化设计,并针对跨线桥桥型设计中一些认识问题进行探讨。 1实例桥简介 “桥南村”桥(以下称为“实例桥”)是南京机场高速公路K17+006处的一座上跨主线的分离式跨线桥,与高速公路呈10°斜交角。 桥面宽度为:7+2×,行车道净宽7m。 设计荷载:汽车—20级,挂车—100。 此桥处在R=2500m的凸曲线中,左右纵坡对称,均为3%。 桥下净空高度按略超过5m设计。 本实例桥上部采用5×20m普通钢筋混凝土等高度连续箱梁结构,下部采用无盖梁独柱式桥墩及肋板式桥台,基础为钻孔灌注桩。 该桥已于1997年6月28日与南京机场高速公路同步建成通车。 2桥型选择 通常,选择桥型应根据适用、美观、经济合理以及设计施工的难易程度等因素进行综合分析,以最终确定工程实施方案。 对于跨线桥而言,经过国内工程技术人员多年的实践,目前所采用的型式已基本集中为预制空心板梁和等高度连续箱梁。 这中间尤其以空心板梁居多。 但是笔者认为,在设计方案时应该以首先考虑等高度连续箱梁方案为佳。 其原因是: ⑴在当今社会,人们对于美的要求越来越高,对周围的建筑物,也同样要求美观。 如今的设计师应该顺应这种要求,在对结构本身强度进行设计的同时,也应该对结构进行美化设计。 作为跨线桥,因为下边要通车,就更为引人注目。 因而要尽量减少横向墩的数量,加强下部空间的透视度,增加墩的纤细感,这对整个跨线高架桥是否美观并具有现代的气势,起着很重要的作用。 而就这一点来说,只有当采用箱形连续梁方案时才能做到,因为箱形截面抗扭刚度很大,对于需要在其梁底下设置独柱单支点的支承形式特别有利。 这时,下部结构可以根据美观要求,做成无盖梁的独柱式结构。 但如果上部结构采用预制拼装式板梁的话,下部就只能做成传统形式的有盖梁式墩台结构,难以达到美观要求。 ⑵等高度连续箱梁桥整体性好,耐久性强,行车舒适。 箱梁顶板和底板都具有较大的面积,能有效地抵抗弯矩,受力合理。 桥墩处也不需要设置伸缩缝,梁长伸展,加上梁高一致,整个桥梁外型简洁优美,线条流畅。 ⑶对现代跨线桥来说,弯、坡、斜桥已越来越多。 如采用预制板桥,那对弯、坡、斜的平面布置处理就比较复杂,设计和施工随之也带来一些问题。 譬如,如何使桥梁各部位、各板块之间准确地组合,斜弯桥的各板端细部处理、端部与端部的联结构造以及墩台长度、墩台轴线交角、墩台横坡和各点高差计算等等都比较繁琐,施工中对于诸特征点的座标及高程控制要求非常严格。 再者,如果是预应力空心板,那么实际施工中每片预应力板梁在钢筋张拉后的上拱值,由于混凝土龄期的不同往往会有较大差别,以至于造成板梁间连接不顺畅,或是桥面铺装层厚度不能统一、甚至摊铺困难等较为严重的后果,施工质量难以保证。 与斜交空心板梁相比,如采用等高度连续箱梁配以独柱墩,则结构轻巧,由于其上部为整体化结构,下部又无盖梁,细部构造比弯斜板桥好处理得多,上述一些不利之处几乎都可以避免,有其独到优点。 并且,等高度连续箱梁桥斜交跨越主线时,采用独柱单点支承则可将斜桥改为直桥,实际增大了主线两侧的有效净空,相应地加大了桥梁的跨径。 因此,这种独柱式结构非常适合于弯、斜桥。 ⑷采用等高度连续梁体系,由于在桥墩支点处负弯矩的存在,使得其跨中正弯矩同简支空心板体系的跨中正弯矩相比显著减小,这就意味着可以节省上部结构的材料数量,减轻梁体自重,也使得下部结构桥墩部分的工程数量相应减少。 这些都可以从实例桥中得到验证。 实例桥曾对预应力空心板梁方案作了较为详细的技术经济比较,同样是5孔20m的上部构造,采用预应力空心板梁的上部所需主要材料用量为:混凝土C50数量,钢绞线,普通钢筋;而最后采用的实施方案—等高度连续箱梁的上部主要材料用量为:混凝土C30数量,普通钢筋。 相比之下,如果考虑钢绞线及其工艺特点,两种方案的综合用钢指标相差不多,但是在混凝土用量上,即使不考虑强度等级差异(板梁混凝土强度等级相对更高一些),普通钢筋混凝土等高度连续箱梁比简支空心板梁竟少用混凝土将近1/3。 这样,上部构造的重量大大减轻了,随之当然也节省了墩台和基础的材料用量,体现出技术经济上的优越性。 还要指出的是,跨线桥目前一般常用的跨径在16~25m之间,上述20m跨径两种桥型间的对比应该说具有较强的代表性。 因此可以讲,同等桥长时,在跨线桥的通常跨径范围内,等高度连续箱梁型式比预应力空心板梁主要材料节省、重量轻,上下部构造均十分轻巧,具有很好的技术经济指标。 3结构造型 结构造型与各部位尺寸比例应相互协调。 例如跨径与梁高及桥下净空比例,墩柱直径与高度及桥梁跨径的比例,主桥箱梁翼缘板悬挑长度与梁高的比例等。 在这些方面,实例桥做得非常成功,墩柱和梁体结构简洁流畅,纤细轻巧,连续和谐。 4横截面设计 常用的箱形梁截面有单箱单室、单箱双室、双箱单室和双箱双室截面等几种,实际采用何种横截面形式,一般应根据桥的宽度和施工方便性来决定。 对实例桥来说,采用单箱单室截面,可以方便施工,同时也节省了材料,其箱顶宽为,箱底宽,两侧翼板各挑出,并采用直腹板。 用支架法现场浇筑施工时,这种单箱单室的截面设计有利于全断面一次浇筑成型,设计成直腹板则对施工更加有利。 实例桥采用较大的翼板挑出长度,主要是为了美观,同时也考虑到要充分利用箱梁受力特性的变化情况,减小箱底宽度以适当提高正弯区截面重心,充分发挥底板受力筋的作用,减轻箱梁自重。 需要指出的是,虽然大挑臂的翼板设计有利于美观效果,但对于类似本桥这样的普通钢筋混凝土连续箱梁桥,如果想用施加横向预应力来增大翼板的挑出长度,则并不可取,那样既不经济,又使施工工艺变得复杂,而且箱室太窄,箱梁在局部荷载作用下,横向弯曲应力往往很大,这样箱梁的横向配筋就要大大增加。 5。 下部构造 下部构造应能满足上部结构对支撑受力的要求,同时在外形上要做到与上部构造相互协调、布置匀称。 实例桥采用无盖梁独柱式桥墩,与连续箱梁的大挑臂结构相配合,能够充分利用桥下空间,简洁明快,外形美观,通透性好,施工方便。 对于墩柱的截面形式,一般来说取作圆形看起来更美观一些,墩柱的直径要根据其同上部结构的协调关系及所需盆式橡胶支座的平面尺寸来定。 对于一般的跨线高架桥,墩柱直径可在~之间,本实例桥实际采用柱直径。 实例桥还将其中间的3号墩作为制动墩,墩顶设固定支座,并加强了3号墩的墩柱及桩基配筋,来抵抗汽车制动力作用。 实例桥的独柱墩基础设置为单排双钻孔桩,桩径,承台按斜桥向布置,这种布置形式能使承台在主线中央分隔带位置顺应主线走向,较合理。 另外,桥台的形式采用肋板式,这种型式的桥台适用性较强。 6。 结构施工 跨线高架式混凝土连续箱梁桥所采用的支架立模、现场浇筑方法,能广泛采用现代施工技术和设备,尤其能适应弯桥和有竖曲线的连续箱梁,施工中上部结构的几何位置易于调整。 此方法在梁体施工时,支架工程是主要的一项工作,目前多采用组合式钢管支架。 其质量稳定可靠,搭设速度快,可以多次周转使用。 除此以外,如能使用混凝土泵车等较先进的设备,则更能体现“省”和“快”。 这种非预应力的等高度连续箱梁结构,施工并不复杂,其整体现浇式梁更为经济,而且非常美观,工期也较短,经济及社会效益明显。 也因为此法是在桥位上现浇施工,可免去大型的运输设备,省去了预制吊装用的架桥机、贝雷桁架或龙门等一些大型安装设备,其优势还在于一次可以进行多孔桥的连续浇筑施工,一气呵成,桥梁整体性好,结构的耐久性强。 7结束语 ⑴在进行跨线桥设计时,应该把对结构的美化设计放在突出位置;在考虑结构自身强度的同时,应注重桥梁造型艺术。 ⑵结构造型与各部位尺寸比例应相互协调,梁体结构要舒展流畅,讲究其线型,下部构造要简洁轻巧,通透性好。 ⑶多跨等高度连续箱梁配以无盖梁独柱式桥墩,具有现代建筑风格和特色。 此桥型整体性好、耐久性强、行车舒适,所用材料省,工期较短,并且非常适合于弯、坡、斜桥形式,富有强大的生命力。 在支架法就地浇筑可以实现的情况下,应将其作为跨线高架桥优先考虑的桥型。 4.桥梁建设的成就与发展趋势 一、斜拉桥 我国在400米以上大跨径斜拉桥建设中,创造了自己独特的风格: 索塔采用混凝土塔、不用钢塔。 最高的混凝土塔为徐浦大桥,塔高210米; 索塔型式多种多样,有A型、倒Y型、H型、独柱; 主梁结构类型多种,有钢箱梁4座、混合式5座、结合梁4座、混凝土梁7座; 斜拉索采用平行钢丝的有15座、钢绞线的有3座。 2001年建成的名列世界第三位的南京长江二桥钢箱梁斜拉桥(主跨628米)和名列世界第五位的福建青州闽江结合梁斜拉桥(主跨605米)均处于世界斜拉桥领先地位。 整体来说,我国斜拉桥设计施工水平已迈入国际先进行列,部分成果达到国际领先水平。 目前,我国正在筹划建设的香港昂船洲大桥、江苏苏通大桥,其主跨均达到1000米以上,斜拉桥建设技术将要有新的突破。 二、悬索桥 悬索桥是特大跨径桥梁的主要型式之一,悬索桥优美的造型和宏伟的规模,人们常将它称为“桥梁皇后”。 当跨径大于800米,悬索桥方案具有很大的竞争力。 我国在90年代以前,虽也修建了60多座悬索桥,但跨径小,桥面窄,荷载标准低。 悬索桥由主缆、塔架、加劲梁和锚碇四部分组成。 大缆以AS法(空中送丝法)或PPWS法(预制束股法)制造,美国、英国、法国、丹麦等国均采用AS法,中国、日本采用PPWS法。 塔架型式一般采用门式框架,材料用钢和混凝土,美国、日本、英国采用钢塔较多,中国、法国、丹麦、瑞典采用混凝土塔。 加劲梁有钢桁架梁和扁平钢箱梁,美国、日本等国用钢桁架梁较多,中国、英国、法国、丹麦用钢箱梁较多。 锚碇有重力式锚碇和隧道锚碇,采用重力式锚碇居多。 三、PC连续刚构桥 PC连续刚构桥比PC连续梁桥和PCT型刚构桥有更大的跨越能力。 近年来,各国修建PC连续刚构桥很多,随着世界经济发展,PC连续刚构桥将得到更快发展。 1998年挪威建成了世界第一stolma桥(主跨301米)和世界第二拉夫特桥(主跨298米),将PC连续刚构桥跨径发展到顶点。 我国于1988年建成的广东洛溪大桥(主跨180米),开创了我国修建大跨径PC连续刚构桥的先例,十多年来,PC梁桥在全国范围内已建成跨径大于120米的有74座。 世界已建成跨度大于240米PC梁桥17座,中国占7座,其中西部地区占5座(表五)。 1997年建成的虎门大桥副航道桥(主跨270米)为当时PC连续刚构世界第一。 近几年相继建成了泸州长江二桥(主跨252米)、重庆黄花园大桥(主跨250米)、黄石长江大桥(主跨245米)、重庆高家花园桥(主跨240米)、贵州六广河大桥(主跨240米),近期还将建成一大批大跨径PC连续刚构桥。 我国大跨径PC连续刚构桥型和PC梁桥型的建桥技术,已居世界领先水平。 四、拱 桥 1.石拱桥 石拱桥是我国历史悠久的源远流长的一种技术。 最近又有新的突破,2001年建成的山西晋城晋焦高速公路丹河大桥,跨径146米,是世界最大跨度的石拱桥。 2.混凝土拱桥 混凝土拱桥分箱形拱、肋拱、桁架拱。 我国采用缆索吊装架设法施工的最大跨度是1979年建成的四川宜宾马鸣溪大桥(主跨150米),采用拱架法施工的最大跨度是1982年建成的四川攀枝花市宝鼎大桥(主跨170米),采用支架法施工的最大跨度是河南许沟大桥(主跨220米),采用转体法施工的最大跨度是1990年建成的重庆涪陵乌江大桥(主跨200米)。 在这个时期,国外混凝土拱桥最大跨度已达390米(前南斯拉夫克尔克桥,1980年建成)。 此时,我国与国外差距最少10年。 1990年宜宾南门金沙江大桥在国内首先采用劲性骨架,建成了主跨240米中承式钢骨混凝土拱桥,接着广西邕宁邕江大桥改进了工艺(钢骨采用钢管混凝土)使这种施工方法又跨上了一个新台阶,于1996年建成了主跨312米中承式钢骨混凝土拱桥、1997年建成的重庆万州长江大桥(主跨420米),为世界最大跨度的混凝土拱桥。 与此同时,贵州江界河大桥建成了世界最大跨度的混凝土桁架拱桥(主跨330米)。 据统计,世界上已建成跨径超过240米混凝土拱桥15座,中国占4座,而跨径大于300米的混凝土拱桥,世界上仅有5座,中国占3座,其中西部地区占2座(表六)。 我国大跨度混凝土拱桥的建设技术,居国际领先水平。 (1)钢管混凝土拱桥 钢管混凝土是一种钢-混凝土复合材料,具有高强、支架、模板三大作用,自架设能力强,较好地解决了大跨径拱桥经济、省料、安装方便,后期承载能力高的问题。 该桥型我国近年来发展很快,自90年代以来,我国建成跨径大于120米钢管混凝土拱桥40多座,建成跨径大于200米的13座,(表七),最大跨径为2000年建成的广州ㄚ髻沙珠江大桥(主跨360米)中承式钢管混凝土拱桥,为世界第一钢管混凝土拱桥。 相继建成的还有武汉江汉三桥(主跨280米)、广西三岸邕江大桥(主跨270米)等多座钢管混凝土拱桥。 表七:中国大跨径钢管混凝土拱桥 目前正在建设的巫山长江大桥(主跨460米),这将又是一座创世界纪录特大跨径钢管混凝土拱桥。 (2)钢拱桥 世界最大跨径钢拱桥是1997年建成的美国新河桥(主跨米)上承式钢桁架拱桥;名列第二是1931年建成的美国贝尔桥(主跨504米)中承式钢桁架拱桥;名列第三是1932年建成的澳大利亚悉尼港桥(主跨503米,公铁两用)中承式钢桁架拱桥。 我国大跨径钢拱桥修建较少,最大跨径的钢拱桥是四川攀枝花3002桥(主跨180米)(表八)。 上海最近动工建设的芦浦大桥(主跨550米)中承式钢箱拱桥,建成后比世界第一的美国新河桥还长米,将夺冠世界第一钢拱桥。 五、21世纪世界桥梁的发展趋向 综观大跨径桥梁的发展趋势,可以看到世界桥梁建设必将迎来更大规模的建设 *** 。 就中国来说,国道主干线同江至三亚就有5个跨海工程,渤海湾跨海工程、长江口跨海工程、杭州湾跨海工程、珠江口伶仃洋跨海工程,以及琼州海峡工程。 其中难度最大的有渤海湾跨海工程,海峡宽57公里,建成后将成为世界上最长的桥梁;琼州海峡跨海工程,海峡宽20公里,水深40米,海床以下130米深未见基岩,常年受到台风、海浪频繁袭击。 此外,还有舟山大陆连岛工程、青岛至黄岛、以及长江、珠江、黄河等众多的桥梁工程。 在世界上,正在建设的著名大桥有土耳其伊兹米特海湾大桥(悬索桥,主跨1668米);希腊里海安蒂雷翁桥(多跨斜拉桥,主跨286+3×560+286米),已获批准修建的意大利与西西里岛之间墨西拿海峡大桥,主跨3300米悬索桥,其使用寿命均按200年标准设计,主塔高376米,桥面宽60米,主缆直径米,估计造价45亿美元;在西班牙与摩洛哥之间,跨直布罗陀海峡桥也提出了一个修建大跨度悬索桥,其中包含2个5000米的连续中跨及2个2000米的边跨,基础深度约300米。 另一个方案是修建三跨3100米+8400米+4700米的巨型斜拉桥,基础深约300米,较高的一个塔高达1250米,较低的一个塔高达850米。 这个方案需要高级复合材料才能修建,而不是当今桥梁用的钢和混凝土。 六、桥梁技术的发展方向 1.大跨度桥梁向更长、更大、更柔的方向发展 研究大跨度桥梁在气动、地震和行车动力作用下,结构的安全和稳定性,将截面做成适应气动要求的各种流线型加劲梁,增大特大跨度桥梁的刚度; 采用以斜缆为主的空间网状承重体系; 采用悬索加斜拉的混合体系; 采用轻型而刚度大的复合材料做加劲梁,采用自重轻、强度高的碳纤维材料做主缆。 2.新材料的开发和应用 新材料应具有高强、高弹模、轻质的特点,研究超高强硅烟和聚合物混凝土、高强双相钢丝钢纤维增强混凝土、纤维塑料等一系列材料取代目前桥梁用的钢和混凝土。 3.在设计阶段采用高度发展的计算机辅助手段,进行有效的快速优化和仿真分析,运用智能化制造系统在工厂生产部件,利用GPS和遥控技术控制桥梁施工。 4.大型深水基础工程 目前世界桥梁基础尚未超过100米深海基础工程,下一步需进行100~300米深海基础的实践。 5.桥梁建成交付使用后,将通过自动监测和管理系统保证桥梁的安全和正常运行,一旦发生故障或损伤,将自动报告损伤部位和养护对策。 6.重视桥梁美学及环境保护 桥梁是人类最杰出的建筑之一,闻名遐尔的美国旧金山金门大桥、澳大利亚悉尼港桥、英国伦敦桥、日本明石海峡大桥、中国上海杨浦大桥、南京长江二桥、香港青马大桥,这些著名大桥都是一件件宝贵的空间艺术品,成为陆地、江河、海洋和天空的景观,成为城市标志性建筑。 宏伟壮观的澳大利亚悉尼港桥与现代化别具一格的悉尼歌剧院融为一体,成为今日悉尼的象征。 因此,21世纪的桥梁结构必将更加重视建筑艺术造型,重视桥梁美学和景观设计,重视环境保护,达到人文景观同环境景观的完美结合。 在20世纪桥梁工程大发展的基础上,描绘21世纪的宏伟蓝图,桥梁建设技术将有更大、更新的发展。 我用5个币给你下载的,请点采纳。 简支箱形截面梁以其优良的力学特性-具有较大的刚度和强大的抗扭性能和结构简单,受力明确、节省材料、架设安装方便,跨越能力较大、桥下视觉效果好等优点。而被广泛地应用于城市桥梁和高等级公路立交桥的上部结构中。简支箱梁桥是和简支T梁同时发展起来的斜面形式。 建筑高度较低,易保养和维护,桥下视觉效果好。 受力明确等截面形式,可大量节省模板,加快建桥进度,简易经济。构造简单,线形简洁美观桥梁的上、下部可平行施工,使工期大大缩短;无需在高空进行构件制作,质量以控制,可在一处成批生产,从而降低成本。 适用于对桥下视觉有要求的工程,适用于各种地质情况;用于对工期紧的工程;对通航无过高要求的工程。 1、概述 连续箱梁是一种常用的桥梁结构体系,它具有变形小、结构刚度好、行车平顺舒适、养护简易、抗震能力强等优点。箱形截面的整体性强,它不但能提供足够的混凝土受压面积,而且由于截面的闭合特性,因此,抗扭刚度大,抗弯强度也好,它是连续体系桥梁常用的截面形式。尤其在高速公路的互通范围内,无论主线上跨被交路,或被交路上跨主线,均须设置主线或被交路的跨线桥。互通区域内线型比较复杂,存在着加、减速车道,小半径曲线,所以跨线桥有时会处在小半径曲线上,而且桥梁宽度为渐变值。此时箱形连续梁因其具有较小的建筑高度、美观的外形等特点就成为首选的桥梁形式。结合某高速公路立交区主线桥梁的设计,浅谈该主线上一座2×30m现浇连续预应力混凝土箱梁桥的设计及一些体会。 2、结构设计 2.1 设计标准 (1)道路等级:高速公路; (2)荷载等级:公路一级; (3)桥面宽度:净; (4)设计安全等级:二级; (5)设计车速:lOOkm/h; (6)最大纵坡:4%; (7)地震裂度:7°。 2.2 箱梁设计 根据主线立交布置,本桥上部结构采用2×30m现浇后张法等高度预应力钢筋混凝土连续箱梁,为单箱双室,梁高,为跨径的1/17。箱梁顶板宽、底板宽,箱梁悬臂长度,箱梁顶面设置2%横坡,由箱梁整体旋转形成。箱梁典型横断面示意见图1。设计采用弹性理论计算方法。 2.2.1 箱梁截面主要结构尺寸 (1)顶板和底板 顶板和底板是箱型截面结构承受正负弯距的主要工作部位。 对于顶板,首先要满足桥面板横向弯矩的要求,其次要满足布置力筋的构造要求。据此,且根据以往经验,顶板厚度取1/15腹板中距,为27cm,考虑近支点处抗剪、承压和锚固预应力束的需要,近支点为渐变加厚,且取支点处厚为40cm。对于底板,除应满足能提供足够大的承压面积,发挥良好的受力作用,还应满足布置正弯矩下的力筋通过的构造要求。根据要求,本桥跨中底板厚为27cm,近支点处设置的渐变段,且取支点处厚为40cm。 (2)腹板 箱梁腹板的主要功能是承受结构的弯曲剪应力与扭转剪应力所引起的主拉应力。若增加腹板的厚度,对截面正应力、剪应力和主拉应力均有良好的改善,但势必会增加箱梁自重,在自重荷载占70%左右的当今桥梁设计中,应尽可能减少自重。而腹板内如果有弯束布置,因弯束预加力的竖向分力对外剪力的抵消作用,则剪应力和主拉应力值较小。因而,腹板内的钢束布置有时是按构造要求而设置的。所以,确定腹板的厚度要综合考虑。腹板的最小厚度要满足钢束管道的布置与混凝土浇筑的构造需要,当然最终取决于受力要求(依桥梁跨度、梁高、腹板间的净距、梗腋设置情况等不同,腹板厚度取值也不同)。根据要求,本桥设计时,腹板的厚度在跨中主要由构造确定,取为50cm,在支点处,考虑承受梁部较大的剪力,同时由构造及抗剪需要,满足最小厚度需要,根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第条的规定,将腹板厚度设计为距离支点长度范围内渐厚,且中支点处腹板厚度取为70cm,边支点处因考虑钢束锚固平弯的需要,腹板厚度取为80cm。 (3)横隔板 箱梁横隔板的基本作用是增加截面的横向刚度,限制畸变应力。在支承处的横隔板还担负着承受和分布较大支承反力的作用。箱形截面由于具有很大的抗扭刚度,所以横隔板的布置可以比一般肋式梁桥少一些。本桥通过结构分析,根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGID62--2004)第条的规定,中横梁取160cm,边横梁取120cm,不设跨间横隔板。 (4)承托 在顶、底板和腹板接头处设置承托很有必要。承托提高了截面的抗弯刚度和抗扭刚度,减少了扭转剪应力和畸变应力。桥面板在腹板支承处的刚度加大后,可以吸收负弯矩,从而减少了桥面板的跨中正弯距。此外,承托使力线过渡比较缓和,减少了次应力。从构造上考虑,利用承托所提供的空间布置纵向预应力筋和横向预应力筋,这也为减薄底板和顶板的厚度提供了构造上的保证。在设置承托时,应考虑承托的竖向加腋和水平加腋两种加腋各自的优缺点,综合进行考虑。在顶板和腹板交接处如设置竖加腋,则可以加大腹板的刚度,对腹板受力有利,使腹板剪应力控制截面下移,错开了纵向弯曲应力高峰,并有利于弯束的布置,但其会使预应力索的合力位置降低。反之,水平加腋对纵向束布置于桥面顶底受力有利,并加大预应力合力偏心,但对腹板受力和弯束布置不利。本桥顶板的承托采用1:4的比例布置,即25×100cm,底板的承托采用1:1的比例布置,即25×25cm。 (5)悬臂悬臂长度也是调节板内弯距的重要参数,悬臂板尺寸的确定要满足结构受力的要求。本桥根据主线桥面宽度和受力计算,确定悬臂长度为,悬臂端高度取18cm,悬臂根部取1/4悬臂长度,即45cm。 2.2.2 箱梁配筋 连续梁的预应力筋在桥梁的纵、横、竖向布置,沿桥垮方向的力筋称为主筋,其数量和布筋位置要根据结构在使用阶段的受力状态确定,同时,也要满足施工各个阶段的受力需要。本桥根据结构受力需要,梁体仅采用纵向预应力。而且,采用高强度低松弛钢绞线,公称直径,公称面积140mm2,标准强度fpk=1860MPa,其技术性能应符合现行国家标准《预应力混凝土用钢绞线》(GB/T5224-2006)。预应力管道采用塑料波纹管。顶板纵向预应力分为腹板束和底板束,腹板束为17Φ815.24钢绞线,采用l2束通长束,均在顶板锚固,采用两端张拉;底板束采用13Φ815.24,每孔3束。考虑本桥两侧均是现浇箱梁施工的特殊要求,本桥钢束不能在两端张拉,经计算分析后,选择底板束一端固定在梁端,另一端过中横梁后,在底板设置锯齿块张拉锚固。 2.3 结构计算与分析 2.3.1 上部结构计算与分析 上部结构按部分预应力混凝土A类构件设计。 计算采用“桥梁博士”模拟施工各阶段及运营阶段进行计算,按《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第5、6、7章相关条款的要求,进行持久状况承载能力极限状态和持久状况正常使用极限状态设计,并根据具体情况考虑持久状况和短暂状况,并对其进行相应的极限状态设计。通过对各阶段内力、变形进行分析,合理布置预应力,将各阶段截面受力控制在规范规定容许的安全范围内。 计算中考虑的荷载:恒载(包括一期恒载和二期恒载)、预应力、汽车荷载、温度变化力、基础变位影响力、混凝土收缩徐变影响力等。 荷载组合的处理:按《公路桥涵设计通用规范》(JTGD60-2004)规定,按承载能力极限状态设计时采用基本组合,按正常使用极限状态设计时,根据不同的设计要求,分别采用作用短期效应组合和作用长期效应组合。本桥各主要控制截面计算结果见表1-表3。 根据规范规定,本桥计算采用的A类预应力混凝土现浇构件C50混凝土截面,组合应力限制为: 正应力: 主应力: 计算结果表明,设计是安全的。 2.3.2 上部结构横向计算与分析 主梁为箱形截面,横向计算按支撑在腹板板底的横向框架进行内力分析、计算。取纵向长度为的箱梁为计算单元,采用“桥梁博士”进行内力计算,结构离散成47个单元,见图2。计算考虑了恒载(包括一期恒载和二期恒载)、汽车荷载、箱梁内外温度变化力、混凝土收缩徐变影响力等荷载。表4-表5列出了根据横向计算合理配筋后主要控制截面裂缝与抗弯强度。计算结果表明,箱梁横向设计是安全的。 2.4 下部结构设计 确定桥梁下部结构应遵循安全耐久、造价低、维修养护少、预制施工方便、工期短、与周围环境协调、造型美观等原则。 特别是互通立交跨线桥、城市立交高架桥的下部结构造型对整体设计方案起着重要的作用。合理的下部结构能使上、下部协调一致,经济、美观。 墩台是桥梁的重要结构,支承着桥梁上部结构的荷载,并将它传给地基基础。因此,桥梁墩台及基础的设计与结构受力、土质构造、地质条件、水文、流速、河床断面及冰冻情况有关。 根据总体设计要求,并与上部结构相协调,本桥桥墩均采用双柱式墩,柱径,横向柱间距为,每个墩柱柱顶设置一个盆式橡胶支座;桥墩基础采用了桩柱连接的钻孔灌注桩基础,桩径,桩长32-36m。考虑到横向稳定性,在墩顶处设置横系梁,高,宽。 3、结语 近年来,现浇连续箱梁桥应用较为普遍。通过对2×30m现浇连续预应力混凝土箱梁桥的设计,从该桥的上下部结构设计特点、结构的受力分析,得到以下体会,希望能为同类型的桥梁设计提供有价值的参考。 (1)在进行箱梁结构设计时,对每一主要尺寸的拟定,都要考虑结构受力的要求和布置钢筋的构造要求;并采取适当的计算方法,对结构进行纵横向计算分析,以保证设计的安全性。 (2)在进行上部结构设计时,应充分考虑墩台和地基的特点,把结构物作为一个整体,考虑其整体作用和各个组成部分的共同作用。 (3)在进行桥梁设计时,不仅要有一个良好的计算分析,更重要的是要不断的积累丰富的经验去判断计算结果的可信度,选用计算结果,亦即选用安全度,根据不同的结构、跨度,选用切合实际的构造,去弥补计算上的不足,确保桥梁结构的安全与经济。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询: 高速公路设计中降低工程造价的探讨摘要:分析了山西省高速公路工程造价偏高的原因,指出公路勘察设计是公路建设过程中的重要环节,对于公路建设质量和工程投资起控制作用,从设计角度探讨了高速公路降低工程造价的措施,从而解决建设资金不足的问题。关键词:高速公路,设计,工程造价,原因近年来,随着国家高速公路网的全面实施,高速公路已全面向山岭重丘区延伸,高速公路平均每千米造价超过了6 000万元,建设资金不足的问题在山岭重丘区的山西尤为突出。山西省高速公路工程造价偏高既存在客观原因,也有主观原因。客观原因主要有:1)山西省大部分为山岭重丘区,沟壑错综复杂,桥梁、隧道数量多;2)煤矿采空区多,处理费用偏高;3)地方路网完善,互通立交、跨线桥数量多;4)高速公路征用耕地数量多,征地费用偏高;5)地方材料资源缺乏,砂、石材料单价偏高。主观原因主要有:1)为了项目尽早开工,没有给设计部门合理的设计周期,甚至边设计边施工,造成勘测和设计深度不足,变更地方较多;2)地方规划变化较快,设计变更多,使工程量不断增加;3)招标文件不规范,工程量清单内容不全面以及合同条款不严密,管理上出现漏洞;4)设计人员存在保质量轻造价的思想。客观原因是由自然条件所决定的,基本上是不可避免的,而主观原因可以通过人的努力,采取有效的措施加以克服或减少。公路勘察设计是公路建设过程中的重要环节,是工程的灵魂,对于公路建设质量、工程投资起控制作用。如何控制高速公路工程造价,合理利用好每一分钱,就要从设计做起。设计中降低工程造价的主要措施如下:1)路线:改变落后的设计理念,深刻理解规范的内涵,灵活运用技术指标,加深路线方案的比选深度。在满足公路功能,保持既有路网完整,群众出行方便的情况下,合理降低路基填土高度,减少借方和占地。控制好标高,达到路基土石方填挖平衡,总量最少,是山区公路设计的要点,山区公路的设计关键还在于平纵指标取值及均衡性。灵活运用技术指标是设计的出发点,是保护环境、节约投资的基础。在20世纪80年代~90年代中期,高速公路建设主要集中在平原区。这一时期,公路勘察设计指导思想主要以“快速、安全、经济”为原则,强调线形舒展,平纵组合协调合理,行车舒适,视觉效果良好。片面强调采用高标准、高指标,使得建成的高速公路路基普遍偏高,不仅过多占用了宝贵的土地资源,景观效果也不理想。21世纪初,平原区公路建设提出了尽量降低路基高度的低路堤设计原则,同期山区也开始大量修建高速公路,面对山区独特复杂的自然条件,设计人员仍采用了平原区设计思想,强调较高的技术标准,出现了大量的高填深挖路基,不仅破坏了区域的自然环境,影响公路景观,而且诱发了大量地质灾害,直接影响道路的正常运营,同时增加了工程造价。2)路基:路基设计应作为总体设计的主要及重点组成部分,主动参与总体设计,从源头控制影响造价的主要因素。尽可能降低平原微丘区的路堤高度,合理确定山岭重丘区的高填深挖路基;路基断面形式应适应地形特点,整体式路基适应平原区;山岭区的分离式路基可最大利用路线走廊内的空间资源,应提倡在山区路线设计时对每个方向进行单独的线形设计,或分离、错布车道;边坡设计应在边坡自身稳定的原则下进行,并应注重动态设计、信息化施工;边沟等根据排水需要设计尺寸,根据安全冲刷及美观要求设置防护类型;绿化防护是利用植草后的防冲刷功能,追求视觉效果的防护形式,土质边坡应提倡植物防护或不防护,对稳定的岩石边坡可采用自然裸露开挖形式;软土地基处理应从考虑软土地基对公路路基的危害程度出发,在沉降允许范围内,尽量利用时间来达到处理要求,少做或不做地下工程,并应注重沉降、稳定的观察工作,加强软基处理的动态设计、信息化施工;滑坡防治必须明确滑坡的可知性和可治性,为路线避绕或治理滑坡作出决策。3)桥梁:桥梁作为跨越江、河、湖泊、海峡及沟谷的构造物,对保障路网畅通起着不可替代的作用,它是路网建设中的关键节点。桥梁造价远远高于路基工程,特别是高速公路向山区发展后,出现大量的桥涵构造物,有效控制投资规模,显得十分迫切。特大、大桥的桥位是路线布设的重要控制点,桥位布设不宜过分强调“桥位选择应服从于路线”的原则,尽量避免出现大量高墩、大跨及弯坡斜桥,以减小桥梁工程规模及技术难度。桥型方案选择要坚持“安全、适用、经济、美观、便于施工及养护”的设计原则,应进行多方案比选。结构设计采用的计算方法要可靠,尺寸选择要合理,钢筋直径的选择及间距布置要充分满足结构受力的要求。重视施工方案的设计及桥梁方案与施工方案的结合,避免因施工方案选择不合理造成施工费用增加。4)隧道:公路隧道有别于地面工程,受地形地质条件影响大,隧道设计应把握好各阶段地质勘察重点与工作深度,趋利避害,准确划分围岩类别,并把地质超前预报与围岩监控量测作为一道工序纳入设计文件中。结合地形、地质条件、洞外接线及构造物布置情况,遵循“早进晚出”的原则,合理选择洞口位置,洞门设计应安全、简洁、实用、少刷坡、少破坏洞口自然环境。隧道衬砌横断面与结构形式应合理、有效适应建设条件,满足耐久性要求,一般采用复合式衬砌结构,并采取必要的辅助施工措施,尽可能采用标准化预设计。隧道内排水设计应从方案设计、材料选择、施工与维修等方面统筹考虑、因地制宜、综合治理,注重可维护性,当可能造成水土资源流失,或造成地面结构损坏时,应采取“以堵为主,限量排放”的措施。隧道内机电设计应结合实际交通情况进行分析,机电设施应规模适中,注意安全与节能,一次规划,分期实施,逐步完善。5)互通式立交:互通式立交属大型构造物,建设费用在总造价中占相当的比例,特别是枢纽互通所占的比重更大,设计中节省投资的意义很大。互通设计中应重视路网调查,掌握路网规划,避免由于路网规划发生变化,导致互通立交方案不合理。设计中应重视路线方案与互通方案的综合比选,处理好主线、匝道、被交路相互间的交叉关系。尽可能采用规模小、造价低的“瘦身”互通立交方案,尤其是在山区,地质条件复杂,不同位置设置造价相差很大,因此应加强互通方案比选。在满足通行能力的情况下,匝道设计速度应根据交通量确定,不宜太高,以减小匝道规模。参考文献:[1]交通部公路司.降低造价公路设计指南[M].北京:人民交通出版社,2005.[2]交通部公路司.新理念公路设计指南[M].北京:人民交通出版社,2005.[3]陈根生.工程项目设计的投资控制[J].山西建筑,2007,33(10):277-278. 索结构在桥梁工程中的应用及基本防腐处理措施 摘要:研究目的:索结构在桥梁工程中得到了日益广泛的应用,其主要应用桥型范围是悬索桥、斜拉桥、拱桥、系杆拱桥等,索的构造也相应分为缆索、拉索及吊索等多种类型,根据桥梁索结构所处的环境条件,相应对其提出了很高的防腐性能要求。研究结论:索结构由于其优异的材料性能特点,在桥梁等多种工程中得到广泛应用,为保证长期安全使用,对索结构的防腐应采取综合工程措施。目前对构成索结构的材料采取的基本防腐处理措施主要为热浸镀锌和环氧喷涂处理。关键词:桥梁工程;索结构应用;腐蚀特点;防腐措施;热浸镀锌;环氧喷涂随着我国桥梁建造水平的提高,在对桥梁与运输服务的综合效益、与周边环境相协调的景观要求、与结构使用寿命相一致的耐久性设计等方面都提出了更高的要求,悬索、斜拉等桥型结构的应用日趋普遍,对索结构的防腐处理提出了新的要求与课题。1索结构在桥梁等工程中的应用特点索结构在桥梁工程中得到了日益广泛的应用,根据索的应用部位、结构受力及变形特点,主要包括缆索、拉索及吊索等多种类型,索的材料主要由钢丝束、钢绞线、钢丝绳等柔性构件构成,同时部分有类似功能要求的构件也可采用圆钢等(如小跨度吊桥的吊杆等),索结构在桥梁工程中的主要应用桥型结构范围是悬索桥、斜拉桥、拱桥、系杆拱桥等,其中包括悬索桥的主缆索和吊索、斜拉桥的斜拉索、拱桥及系杆拱桥的吊索、水平拉索(明索)等,对于一些桥梁结构的特殊处理(包括施工过程中的临时受力需要)及旧桥加固等有时需采用体外索的处理形式,也属索结构在桥梁工程中的应用范围。另外,也有一些诸如预应力锚索等也在包括桥梁等很多工程中得到日益广泛的应用,特别在水电、高挡墙路基、桥梁以及其它各种加固工程等应用十分广泛,对保证工程安全、有效控制工程投资发挥了重要作用,尽管有些严格从结构特点上判断不属于索结构,但从防腐处理考虑则很多具有类似的技术要求。对不稳定的岩(土)体采用预应力锚索体系进行整体加固已成为目前基本选择和常规做法,工艺上也具备愈加成熟的特点,在道路工程设计施工中也常常面临高路基工程,从满足受力要求、节省工程量、节约占地需求、降低工程投资、改善外观效果等方面考虑,自立互锚(或半自立锚固)混凝土挡土墙也应用较多,山区地形条件更是如此,桥梁工程中也有较多应用工程实例,以切实保证结构安全及设计合理,如在万州长江二桥的锚碇结构设计中,根据工程地质条件,为保证结构安全及有效控制工程量,锚碇前端采用了预应力岩锚体系。目前,从桥梁跨度、桥型构造特点、结构美观、施工条件等各种因素综合考虑,索结构在桥梁工程中的应用前景十分广泛,包括永久工程及临时工程等,尤其是钢索的柔性结构特点对施工可以带来很大便利,而随着材料科学的不断发展,用于索结构的主要材料钢丝、钢绞线、钢丝绳等材料强度不断发展、规格系列越发齐全、防护水平显著提高,同时设计计算分析水平及施工操作水平也迅猛提高,以上各种条件变化为索结构在桥梁工程中日益广泛的应用创造了良好条件。根据腐蚀条件及长期使用经验,对包括桥梁用各类索结构的防腐处理引起工程界愈加高度的重视,成为衡量桥梁工程设计施工质量、保证结构耐久性关键控制因素之一,结合有关防腐处理研究部门及相关生产厂家的共同努力,其防腐处理的工艺及技术水平也有了很大提高,除对索结构的基本材料钢丝、钢绞线等本身外表面必须进行必要的防腐处理,通常采用热镀锌或环氧涂层防护等处理措施,还需对成型后的缆索或索股等采用其它防护处理措施,为切实保证其有效防护使用年限要求、提高整个工程的使用性能条件提供良好保证。对由平行钢丝或钢绞线构成的各种拉索、吊索等构造,其成型规格尺寸通常不是很大,一般外表面采用热挤PE进行防护,应在工厂进行专业化施工,同时PE材料也具备较好的现场修补条件,热挤PE有单层或双层构造,外层有多种色彩选择,可以满足防护及景观效果等多方面要求;悬索桥主缆在成桥后需对其采取综合防护处理,有较高技术要求;对于由钢丝绳构成的索结构通常可采用涂装或油脂防护;此外,对索结构的锚固与其它构造的衔接处理也高度重视,采取了一系列工艺改进措施。2桥梁索结构应用中存在的主要问题由于索结构基本为体外构造,暴露于大气环境之中,处于十分不利的腐蚀环境条件,因此,用于桥梁工程时必须充分考虑其很高的防腐性能要求,不仅包括索的自身防腐处理,对其与相关构造的衔接处理也需予以高度重视,且在很多情况下成防腐薄弱环节及影响结构安全的控制因素,必须采取有效措施切实保证其耐蚀性要求,为确保结构整体安全创造有利条件。在以往国内外桥梁工程设计施工中,尽管针对索的防护重要性有一定认识,通常也都采取了相应的防护处理措施,但由于受当时防护处理技术水平、认识水平及重视程度不够的制约影响,因而由于对索的防护处理不力、影响工程正常使用及需要进行返工处理的工程实例很多,而进行相应事故的处理投资费用很高,且费工费时,对正常交通一般也会造成很大影响,个别严重的还会造成工程报废,所造成的影响及损失更大,从结构特点及以往工程实例特点分析,其中斜拉桥出现的问题更多一些,由此造成了很大的直接及间接损失,拱桥的吊索也很容易发生类似问题。针对悬索桥结构而言,对其主缆的防护历来十分重视,通常除对材料本身进行必要的防护处理外,对成型后的缆索外表面通常还会采取一系列其它防护处理措施(结构封闭及涂装处理),使之缆索处于相对封闭状态,同时主缆的受力特点也决定了其受力条件较为均匀,应力幅度变化相对不大,两端连接锚头基本采用工艺成熟的热铸锚工艺,材料性能匹配较好,通常不会出现腐蚀局部薄弱环节,基于以上特点,悬索桥由于主缆防护处理不利出现重大工程事故的不多,因而就主缆防护存在一定的重视不够或认识不足之处,在较长一段时间就此方面的技术发展进步相对不大,但并不表明其缆索的的防护处理就不存在技术问题。由于大跨度悬索桥对主缆索进行了封闭处理,进行相应检查较为困难,有些问题不能及时发现和暴露出来,但近年来美国、日本等国家对以往修建的大跨度悬索桥主缆索进行的相关检查(拆除外表面涂装及缠丝后)中发现,其主缆钢丝的锈蚀现象较为严重和普遍,主要原因是虽然对钢丝自身及缆索外表面进行了相关的防护处理,但外表面防护处理仍难以完全避免外部水汽浸入,防护涂层的龟裂及索鞍、索夹等防水薄弱环节的存在是主要原因,而水汽一旦浸入则很难顺利排出,由此形成主缆内部湿度很大,严重恶化了其腐蚀环境,造成钢丝锈蚀,因而近年来除该改进缠丝材料构造及工艺、采取进一步的封闭措施外,还考虑采用必要的除湿设备,当然工程投资会有所增加,但考虑长期使用目的仍是必要的。我国进行现代意义的大跨度悬索桥建设时间不长,各桥梁工程对主缆也尚未进行相关检查,有些可能出现的问题也尚未暴露出来,但借鉴国外经验,对主缆防护采取各种加强措施仍是十分必要的。国内外桥梁工程由于对索的防护处理不利造成较大影响及损失的主要工程实例有:德国汉堡的Kohl-brand Estruary桥,由于斜拉索腐蚀严重,建成的第三年就更换了全部的斜拉索,耗资达6 000万美元,是原来斜拉索造价的4倍;委内瑞拉的Maracibo桥,建于1958~1960年间,受当时技术水平制约,其斜拉索没有进行镀锌处理,采用一般的涂漆防护,经过不断的风雨侵蚀,斜拉索锚头处的锚箱罩盖率先损坏,进而使得斜拉索与上锚箱的接口处发生锈蚀,且相当一部分锈蚀十分严重, 1979年发生个别斜拉索断裂,因此决定对全桥斜拉索进行更换,全部进行镀锌处理,并采用了含有铅质的酚醛树脂糊膏进行表面防护,且换索后拉索根数增加一倍;我国广州海印大桥于1988年年底建成, 1995年起陆续发生索股断裂及松断事故,调查表明产生的主要原因是管道压浆工艺未能保证拉索顶部灌注饱满,造成拉索直接与空气接触进而发生锈断,为防止事故的进一步发生,被迫进行全桥换索工程,耗资大量资金及时间; 2001年11月7日,宜宾南门大桥(拱桥)倒塌,事故调查发现拉索已经发生严重生锈;此外,国内外还有许多斜拉桥建成后陆续进行了局部换索或其它处理。美国在1903年建世界上第一座现代化长跨度悬索桥W illiamsburg桥,受当时技术水平和造价制约,没有对钢丝进行镀锌处理而采用一般防护,建成后仅7年就发现钢丝锈蚀断裂, 1922年对缆索补缠镀锌钢丝,但1934年又发现主缆内有水从锚碇处流出,虽陆续采取了多种处理方案,但都没有能够阻止锈蚀发展, 1992年开始被迫进行为期3年的主缆维护工作,耗资7 300万美元。3索结构的腐蚀特点索结构在桥梁工程的应用环境特点基本处于高空之中,主要的腐蚀环境是大气环境腐蚀,在高纬度地区,对悬索桥主缆索通常还要考虑到积雪对缆索的影响。目前构成桥梁索结构的材料基本为高强度钢丝或钢绞线组成,另外钢丝绳在悬索桥吊索中也有较多应用,而钢绞线或钢丝绳也是由不同直径的钢丝在工厂再加工而成,因此高强度钢丝是桥梁工程中索结构的最基本材料,属冷拨碳素钢,包括强度等各项技术指标不断取得提高,目前在不进行镀锌处理等条件下其标准强度多为1 860MPa,而2 000MPa及以上标准是今后的发展方向,且多采用低松弛系列,能够更好地适应工程实际需要,同时,在对钢丝进行镀锌处理过程中,钢丝表面会有一定损伤,因此镀锌钢丝(或钢丝绳)的抗拉强度等有所降低,目前相关标准中通常采用1 600~1 700MPa。由于钢丝的含碳量较高,通常在0. 75% ~0. 85%之间,因此塑性条件相对较差,在没有进行防护的条件下其抗腐蚀性很差,造成钢丝自身腐蚀的主要原因包括应力腐蚀及疲劳腐蚀:应力腐蚀是材料在一定环境中由于外加或本身残余的应力,加之腐蚀的作用,导致金属的早期破裂现象,金属的应力腐蚀破裂主要是对应力腐蚀较为敏感的合金上发生,纯金属很少产生,合金的化学成分、金相组织、热处理对合金的应力腐蚀破裂有很大影响,处于较高应力状态情况下,包括材料内部各种残余应力、组织应力、焊接应力或工作应力在内,且基本为拉应力影响,可以引起应力腐蚀破裂,防止应力腐蚀破裂的主要方法是消除或减少其应力状况,并且通过改变介质的腐蚀性(添加缓蚀剂),选用耐应力腐蚀破裂的金属材料,从而避免相关腐蚀的出现;疲劳腐蚀是钢铁在交变应力作用和腐蚀介质的共同作用下产生的一种腐蚀现象,同时也是在桥梁工程的索结构中发生较为普遍、概率较大的腐蚀现象,减少疲劳腐蚀的主要方法是选择适应相关腐蚀环境的抗腐蚀的材料,同时对材料表面进行镀锌、涂漆等方法减轻疲劳腐蚀的作用。桥梁工程设计施工过程中,针对索结构的应用,从保证其使用安全考虑通常都留有相对较大的安全系数,不同的索结构及材料类型对相应的安全系数有具体要求,尽管如此,各种索结构通常仍是在较高的应力状态下工作的,虽然对于工作疲劳应当没有影响,但是在高应力状态下,腐蚀介质和应力的相互发生作用,如果不进行合理有效的防护处理,其腐蚀是非常容易发生的,腐蚀发生将会大大影响钢丝的受力性能,同时从桥梁工程的构造特点考虑,索结构与其它构造的衔接部位通常也是最易受腐蚀的薄弱的地方,同时悬索桥的主缆索在锚碇范围是通过散索鞍后散开在锚室内进行锚固,而锚碇为地下结构,无论采用何种锚碇构造,锚室内的空气湿度通常都很大,对包括缆索及各种连接构件的防腐都十分不利,目前,在锚碇洞室内通常还需设置排水及除湿设备,以改善洞室内的腐蚀环境条件。1967年12月,美国西弗吉尼亚州和俄亥俄州之间的俄亥俄大桥突然倒塌,事故调查的结果就是因为应力腐蚀和腐蚀疲劳产生的裂缝所致。4钢丝的热浸镀锌处理热浸镀锌工艺在桥梁工程中得到了广泛应用,尤其是在各类索结构的防腐处理中应用更是极为普遍,是目前对钢丝防腐处理的常规工艺方法,对钢丝进行热浸镀锌可以有效防止或减小索结构在制造、运输、架设以及使用过程中的锈蚀,结合其它合理的防腐处理措施,切实保障其耐蚀要求,进而为整个工程的安全长期使用提供良好条件。热浸镀锌工艺已有较长的发展历程,用于钢丝防护主要是随着现代悬索桥的建设而得到发展并逐步扩大其应用范围,美国是世纪上建造现代悬索桥最早的国家,在20世纪30年代就开始在悬索桥上使用主缆及吊索系统用镀锌钢丝,比如世界闻名的金门大桥,而一些没有使用镀锌钢丝的桥梁多因应力腐蚀或腐蚀疲劳而不得不后期进行换索加固。热浸镀锌即是把钢铁浸入温度达440~465℃或者更高温度的熔化锌中进行处理的过程,铁基体与熔锌反应,形成铁-锌合金层覆盖在整个工件表面,镀锌表面有一定的韧性,可耐很大的摩擦及冲击,同时与基体有着良好的结合,钢丝热浸镀锌的基本工艺流程为:除油→水洗→酸洗→水冲洗→熔剂处理→烘干→热镀锌→后处理→收线→成品。热浸镀锌的镀层厚度通常在50~250μm,对于钢丝要求其锌层重量控制在300g/m2以上,同时对附着力按有关要求进行严格的检查控制,镀锌质量保证主要的控制因素包括表面基材处理效果、助熔方式、镀锌时间、引出方式、引出后的处理(锌层均匀性及表面效果)等。5环氧树脂涂层处理5. 1基本材料特点及应用条件环氧树脂是由环氧氯丙烷和双酚基丙烷在碱作用下缩聚而成的高聚物,含有极性高而不易水解的脂肪基和醚键,涂膜的耐化学性好,其结构是刚性的苯环和柔性的烃链交替排列,物理机械性能良好,同时其固化时体积收缩率低,可避免由于内应力的产生影响附着力,由于环氧树脂属热固性树脂,其固化后形成的三维交联的主体结构会导致其很少有分子键滑动,因而使用中需增加其韧性指标,通常可采用胺类固化剂,有机多元胺在常温条件下能与环氧树脂交联固化,所形成的涂膜具有良好的附着力及硬度指标,同时具有耐脂肪烃溶剂性、耐稀酸(碱)性和耐盐水性,防腐性能十分理想。当需要防护处理的金属结构等处于较为特殊的使用环境条件(如埋于地下土层当中等),根据其腐蚀特点及对防腐材料的性能特点要求,可针对配方作进一步改进以满足相关的使用要求。由于煤焦沥青含有环烃结构,如酚或塞酚之类具有很好的抗腐蚀细菌功能,同时具有很好的水下不渗透性,因此,在环氧树脂防腐体系里加入煤焦沥青可使其具有一般环氧树脂所不具有的特性,可以有效提高涂层在土壤中的抗水渗透性及抗细菌腐蚀性能等,其涂料配方由环氧树脂、溶剂、固化剂、填料等组成。根据实际使用环境条件的不同,钢铁等金属材料的腐蚀过程及腐蚀类型较为复杂多样,主要为化学腐蚀及电化学腐蚀等,为保证其使用耐久性及结构安全,必须进行防腐处理,对涂膜的基本质量要求包括涂膜厚度的合理选择、附着力、耐皂化性能、化学耐久性、耐冲击性等。采用环氧树脂涂层防护处理对工艺设备的要求很高,其应用于桥梁等工程的防护处理在美国、日本等国家发展起步较早,国内近年来也发展很快,由于需进行专业化生产的特点,已有部分生产厂家引进了必要的技术和设备,通过消化吸收具备了相应的生产能力。目前在桥梁等工程上应用最多的是环氧喷涂钢绞线(简称SC钢绞线),由于工艺处理复杂,技术要求高,因而其造价相对较高,但由于其优良的防腐性能条件和技术优势使之具备广阔的发展应用前景,主要应用于斜拉索、吊索、桥梁体外索加固、岩(土)体加固及一些地下工程等对防腐性能要求很高的工程,也可用于常规工程,用于桥梁等工程后防腐年限大幅度提高,结构安全更有保障,同时可以有效避免或减少后期损失,如斜拉桥曾较多地发生断索等工程事故需要进行更换处理,其换索施工不仅对正常交通造成很大影响,而且所需费用十分昂贵,各种损失巨大。5. 2SC钢绞线主要技术特点随着高强度预应力钢绞线在包括桥梁等许多工程中日趋广泛的应用,特别是根据各类索结构的构造形式、应用环境特征、腐蚀特点,同时考虑在保证工程整体寿命及结构安全方面的重要作用,对其防腐效果及耐久性提出了越来越高的要求,防腐处理技术的相应发展是其关键,为从根本上有效解决钢绞线的防腐耐久性问题,环氧树脂涂层预应力钢绞线(英文名称 Strand,故简称SC钢绞线)技术得到了很快的发展及应用,从涂装操作特点考虑属粉末涂装法,常用的粉末涂装主要有流动浸渍法和静电喷涂法, SC钢绞线系采用高压静电喷涂法将环氧树脂粉末喷射于钢绞线各根钢丝上,然后加热熔融、固化、冷却,从而在组成钢绞线的各根钢丝外表面形成一层致密的环氧涂膜,为实现这一目标,喷涂前需将钢绞线各根钢丝暂时打散,喷涂后再将其复扭成型。以前对钢绞线的防腐处理通常采用镀锌钢绞线、外表面整体进行树脂填充及涂装环氧层、普通钢绞线外侧设热挤PE防护层等处理方法,而SC钢绞线则是对组成钢绞线的各根钢丝外表面都进行环氧涂膜处理,要求环氧涂膜层有良好的致密性及厚度均匀,因此称之为全涂装钢绞线。SC钢绞线系与其它防腐处理类型的钢绞线的主要区别是由于所用的防腐材料与工艺上的不同,从而造成其防腐效果及钢绞线机械性能方面的较大差异,一般钢丝或钢绞线经镀锌处理后,由于镀锌过程对钢丝表面不可避免地产生一定损伤,因而机械性能均有所下降,体现在设计中的影响主要是强度指标需要降低,另外,镀锌钢绞线表面锌层被刮伤后,刮伤处会产生阴极电化学反应,从而加快腐蚀的发生,其它防腐处理方式也存在一定的薄弱之处,包括防腐效果、物理特性变化、锚具要求、与混凝土的附着效果、对施工操作的影响等方面, SC钢绞线主要技术特点如下:对构成钢绞线的各根钢丝都进行了充分的表面材质调整,各根钢丝一边旋转一边进行涂装处理,与其它涂装法比较,其膜层厚度较薄(平均120 ~180μm)且均匀,同时致密性好,耐磨性强,可靠性高,具有良好的耐离子渗透、耐化学品、耐电压、耐紫外线辐射、耐疲劳性能等基本特点,综合防腐效果十分理想,应用前景广阔。与涂装前的普通钢绞线相比, SC钢绞线的强度及柔软性没有降低,同时,由于涂装处理时的温度不高,不会出现镀锌处理造成的强度损失较大的特点,其强度指标与不涂装钢绞线基本没有区别,松弛率也可保证,十分有利于设计施工控制。普通钢绞线即使出厂不久,局部仍易产生锈蚀或浮锈,而在存放时间较长、保护措施不利条件下或由于施工养护等方面的原因,极易发生较为严重的腐蚀现象,甚至导致报废,而SC钢绞线在制造时需在打散情况下对各钢丝进行表面防腐处理,成型后不会出现防腐蚀薄弱部位,不会发生锈蚀现象,合理的操作可充分保证其涂膜质量。涂装处理后的SC钢绞线较原基材外径变化很小,目前所用的常规锚具、夹片仍可适用,无需另行采用专用锚具,有利于方便施工、合理控制投资。由于膜层厚度相对较薄, SC钢绞线的涂装材料用量较少,有条件作到价格更为合理,现场施工通常不会另行增加费用,目前主要在于出厂价格相对较高,其主要原因在于对设备、技术及操作工艺要求很高等方面因素,同时国内能够生产的厂家也有限,随着普及率的不断提高及各方面条件的不断改善,其价格也会相应降低。6结论(1)索结构由于其优异的材料性能特点,在桥梁等多种工程中得到广泛应用,同时,随着设计施工技术及材料工艺不断发展,其应用范围日益扩大,在工程建设中发挥着极为重要的作用,特别在大型工程建设中具有难以替代的作用。(2)为保证制造质量及精度要求,降低现场工作量及难度,进行工厂化生产制造是主要应用发展方向,应根据工程特点进行合理选择,包括合理的锚固连接构造。(3)根据材料自身及使用环境特点,为保证工程长期安全使用,避免或减少各种损失,对索结构的防腐必须高度重视,采取相应工程处理措施。(4)对索结构的防腐应采取综合工程措施,随着技术进步及认识程度的不断提高,在此方面已取得很大发展。除对索体材料自身进行必要的镀锌、环氧喷涂等措施外,对成型后的索体结构进行热挤PE及其它防护处理措施,可取得良好防腐效果。参考文献:[1]中华人民共和国交通部.公路悬索桥设计规范(报批稿)[S].[2]JTJ 027—96,公路斜拉桥设计规范(试行)[S].[3]GB/T 21073—2007,环氧涂层七丝预应力钢绞线[S].[4]唐清华,郑史雄.斜拉桥与悬索桥的防腐[ J].四川建筑, 2005(1): 125-126. 摘要:本文根据多年审核造价文件的体会,对公路工程造价编制中出现的各类问题进行了分析,提出了一些对策措施;对造价编制中存在的争议问题提出解决方法,与行业同仁共同探讨与提高。关键词:公路、造价、问题、对策措施、探讨... 给你一篇相关文章,参考一下,希望对你有所启发,字数限制,只能发一部分:摘要:熟悉和掌握了设计图纸,指出充分利用计价定额资料、施工组织设计以及和提取工程量的程序和方法,桥梁工程的预算就变得由难而易,进而就会准确掌握桥梁的工程造价。 关键词:合格桥梁 工程 造价 0 引言 工程造价编制的一般步骤和工作内容可概括为拟定工作方案,确定编制原则;熟悉掌握计价定额的内容和使用范围,工程量计算规则和计算方法,应取费用项目和标准;在熟悉设施国表资料和文字说明、结合现场调查、做好核对工程量的基础上,正确提取工程量;了解施工方案和施工计划中的内容,确定先进合理、安全可靠的施工方法;进行工程造价和各种价格、费用的分析和累计计算,复核及审核,最后编写编制说明和成稿装订。 1 施工预算中如何剥离和提取工程量 我国的公路建设工程设计图纸的编制办法,不同于房建工程(现国家已对建筑工程推行工程量清单计价模式),作为编制工程造价的基础资料的工程量,通常是设计人员在完成设计图纸的同时已进行了计算。在编制工程造价之前,造价工程师又进行了熟悉设计图纸和对工程量的核对工作。所以,施工计价的关键是如何从设计图纸中提取工程量。在编制预算工作中,桥梁工程的计价是比较繁琐的,而且又是占造价文件篇幅最多的一项,加之近年来桥梁的设计及施工技术地不断,新结构、新材料、新工艺的广泛应用,更增加了工程造价计价的难度。 辅助工程量的确定至关重要 根据桥梁工程施工技术的特点,其造价的基础资料包括以下两下方面的内容:①主体工程,它包括桥染基础、下部和上部工程。一般设计图纸已经给定,按照定额的要求,可较容易确定其计价的各项工程量。②辅助工程,它们只是有助于主体工程的形成,为完成主体工程所必须采取的措施,完工后随之拆除的一些设施。这样情况就比较复杂,如属于基础工程部分的,有挖基、围堰、排水、工作平台、护筒、泥浆船及其循环系统等;属于上下部工程的,有拱盔、支架、吊装设备、提升模架、施工电梯等;与基础和上下部工程都有关联的,如混凝土构件运输、预制场及其设施(如大型预制构件底座、张拉台座、门架等)、拌和站(船)、蒸汽养生设施等。这些辅助工程的计价数量,除挖基外,都要根据建设项目的实际情况和施工组织设计的要求,并以往的成功经验来取定,设计图纸上是不反映的,可塑性较大,而对工程造价又有极其重要的影响。因此,正确取定各项计价工程量,就有着十分重要的现实意义。 转自:很多的,具体去教育大论文下载中心搜一下吧。 完善铁路工程造价管理的思考摘要:本文围绕铁路工程造价管理展开思考,简要介绍了现行铁路工程按照建设前期、工程交易期和工程实施期三个阶段实现全过程造价管理的主要内容;分析了目前我国铁路工程造价管理定额计价模式及推行工程量清单计价模式中存在的问题;时如何完善铁路工程造价管理进行了思考,并提出了继续发展完善铁路定额造价管理体系、大力推进工程量清单及计价管理、加快铁路工程造价信息化建设,构建适合我国社会主义市场经济体制和铁路高速发展要求的铁路工程造价管理体系的建议。关键词:铁路工程造价管理1引言铁路建设工程具有周期长、投资大、建设管理复杂的特点。铁路基本建设项目实行全过程、全方位的投资管理。铁路工程造价管理是铁路建设管理的基础,也是铁路建设投资管理一个核心内容,贯穿于工程建设全过程,既体现在铁路工程建设前期可行性研究、投资决策上,又体现在招标、投标以及施工、竣工交付使用前所需全部建设费用的确定、控制、监督和管理上。建立完善的铁路工程造价管理体系,对铁路工程建设加强投资管理,节约建设资金,发挥投资效益具有非常重要的意义。近年来,铁路工程建设进人了一个前所未有的高速发展的时期,以客运专线、高速铁路为主要内容的大规模铁路建设全面展开。随着我国社会主义市场经济的发展和铁路建设市场的逐步完善,新的形势和任务都对铁路工程造价管理提出了更高的要求。因此,有必要对现行铁路工程造价管理进行探讨,思考如何进一步完善铁路工程造价管理体系,以适应铁路建设改革和发展的需要。2现行铁路工程浩价管理对应工程建设的整个过程,铁路工程造价管理的内容可划分为三个阶段,即工程建设前期、工程交易期和工程实施期。工程建设前期重点是投资估算、设计概算、施工图预算,工程交易期重点是形成交易价格或合同价格,工程实施期重点是验工计价、施工结算价及竣工决算。这些造价形式之间存在着前者控制后者、后者补充前者的关系。工程建设前期的造价管理工程建设前期是指铁路建设工程的预可行性研究、可行性研究和设计(初步设计和施工图设计)阶段,是工程的决策阶段。前期的造价管理主要是通过该阶段确定的投资估算和设计概算,初步确定工程造价和控制工程投资。(预)可行性研究阶段通过确定建设工程的建设规模和技术标准,优化选择技术方案等确定工程投资估算,作为建设工程总投资的控制基础。设计阶段通过对设计文件和概预算的审查,确定工程设计概算,建设工程的总投资以审查批复的设计概算为准。所以,工程建设前期的工程造价管理,是铁路工程造价管理体系的基础,对于投资决策、合理确定工程造价和控制工程投资具有特别重要的意义。工程建设前期的造价计价的依据是铁道部发布的铁路工程定额和编制办法等。包括概(预)算定额、估(概)算指标、铁路工程建设材料预算价格、铁路工程施工机械台班费用定额、铁路基本建设工程投资(预)估算编制办法、铁路基本建设工程设计概算编制办法等。工程交易期的造价管理工程交易期是指工程设计完成后,开展招标、投标、评标、定标及签订施工合同阶段。在工程交易期,经过招标等程序,通过市场竞争合理降低工程造价。工程交易期的造价计价的依据是工程建设前期审查批复的设计概算。招标价格不能超出批复的设计概算。为适应市场经济和与国际惯例接轨,铁道部正积极推进工程量清单及计价管理办法,以规范市场交易,便于市场形成价格。工程实施期的造价管理工程实施期是指施工合同签订后开始施工到完成竣工验收的阶段。在工程实施期,根据铁道部变更设计管理办法、工程建设实际和施工合同约定,严格控制变更设计和费用调整。通过验工计价、施工结算及竣工决算等,确定最终工程造价和工程总投资。3存在问题的分析我国铁路工程造价管理经过长期的不断补充和发展,已初步形成了较为完整的管理体系。但是长期以来,这种管理基本上是沿袭计划经济体制下的管理模式。随着我国社会主义市场经济体制的建立和发展,目前的铁路工程造价管理模式,已逐渐不能适应新形势和新任务的要求,弊端渐显。定额计价模式存在的问题现行定额计价模式是在计划经济条件下建立和发展起来的造价管理模式。即铁路建设工程必须按铁道部发牙巨的具有法规性和指令性的工程定额和编制办法来确定工程造价,定额中的工、机、料消耗量,不分工程难易采用统一定量,材料费价格统一,取费内容、标准统一,即所谓的量价合一。铁道部发布的工程定额和计价标准是铁路建设工程设计概(预)算编制的依据,在工程建设前期对初步确定工程造价和投资控制具有十分重要的作用,也是必须执行的。但面临新形势和新任务,目前的定额计价模式还存在一些问题:(l)定额滞后,不能对市场变化作出快速反应。近几年来,客运专线、高速铁路等高标准的铁路建设空前发展,铁路建设中的新技术、新工艺、新设备、新材料得到广泛应用,同时建设市场的供求关系变化非常迅速。虽然铁路工程定额及编制办法也在不断补充、完善,采取了每年发布材料价差系数对材料价格进行调整等动态管理措施,但现行铁路工程定额仍不能对市场变化作出及时反应,价差系数发布周期(年)过长,材料调差方式难以及时反映市场价格实际水平。定额计价标准确定的设计概算价格与市场价格存在着较大的差距,造成概算不能准确反映工程实际造价,影响了铁路建设工程造价和投资控制的科学性、准确性和合理性。(2)编制办法仍待完善。铁路建设各种编制办法对设计概算的编制方法及计费标准作了详细的、具体的规定,是计算各项费用的依据,是必须执行的。但目前的编制办法中取费内容、取费标准的规定等,有些已不适应市场经济和竞争机制的要求。如勘察设计费、施工管理费等,都应该作为竞争性费率而施行浮动费率而非固定费率,等等。(3)定额计价模式不适应市场竞争机制。目前,由于工程量清单计价模式并未真正全面推行,施工企业也是按照定额计价模式确定工程报价。根据统一的土程定额和编制办法,施工单位不能根据具体的施工条件、施工设备和技术专长来确定报价,不能按照自己的采购优势来确定材料预算价格,不能按企业自身的管理水平来确定工程费用开支,企业的优势得不到体现。所以,定额计价模式只是从会计的角度规定铁路工程造价的构成,并不能反映市场经济和竞争体制下的建设工程的真实价格。推进工程量清单计价模式的问题工程量清单计价是适合市场经济和与国际接轨的工程计价模式。工程量清单计价模式的特征是量价分离。建设单位根据铁道部工程量清单计价规范编制工程量清单,把建设工程量化为工程“量”,投标单位根据此统一的“量”,结合自身实力报价。推行工程量清单计价,有利于工程造价管理,有利于工程招投标的公开、公正、公平,有利于施工企业自主报价和竞争,有利于降低工程造价和投资控制。所以,铁道部在积极推进工程量清单及计价管理办法。但目前,与工程量清单计价规范相适应的造价管理措施尚未健全。一是与工程量清单计价模式相适应的消耗量定额和综合单价信息有待制定和完善;二是铁路建设市场需要的具有指导性的消耗量社会平均水平和价格信息,需要价格管理部门及时发布;三是工程造价信息网络尤其是基于计算机技术的工程造价信息管理系统亚待健全。企业定额的问题实行工程量清单计价模式,工程实施期的工程造价计价和控制工作主要依靠企业定额。但长期以来施工企业没有把企业定额建立起来,在投标中仍然依靠铁路行业定额测算成本,调整后形成工程造价,这是不符合工程量清单计价规范的。铁路造价管理部门应该指导和帮助施工企业建立完善企业定额,同时也有利于工程造价基础资料的积累。建立完善的工程造价管理体系,应该加强这方面的工作。4完善铁路工程造价管理的建议为了适应社会主义市场经济体制和铁路建设的高速发展,适应铁路建设的新形势、新任务、新技术,进一步加强铁路建设投资管理和控制,节约建设资金,发挥投资效益,应该进一步完善铁路工程造价管理,逐步建立起科学、合理,符合市场经济规律的、动态的造价管理体系。继续发展完善铁路定额造价管理体系经过多年不断探讨、补充、发展,铁路工程定额体系已经比较完备,形成了较完整定额造价管理体系,在铁路建设工程前期的决策、造价管理和投资控制中发挥了不可或缺的作用,而且还将继续发挥重要作用。所以,有必要继续发展和完善铁路定额造价管理体系。(1)实行工程定额动态管理。目前的市场机制,市场价格的变化非常快,变化幅度也很大,铁路建设中的新技术、新工艺、新设备、新材料不断涌现,如无碴轨道技术,高性能混凝土,高速铁路,等等。既有的专业定额中没有这方面的内容,但已在铁路建设中大规模推广应用,并且对工程造价影响很大,需要及时补充。建议把多年来沿袭的与计划经济相适应的静态造价管理模式,改为全过程动态管理,即在整个建设过程中对工程造价发生影响的全部因素进行动态监控,及时分析、调整,建立起适应我国社会主义市场经济和铁路建设市场的,科学、合理的动态定额造价管理体系。(2)在编制办法相对稳定的前提下,对有关取费标准进行合理的调整,以适应市场经济和竞争机制的需要。对竞争性的取费费率如设计费费率等,可采用浮动费率,以鼓励设计单位提高设计质量,优化设计方案,降低工程造价。同时及时调整、纳人国家和铁道部发布的一系列取费标准及其它有关部门规定必须列人的费用内容,为未来可能发生的政策性的费用预留接口,等等。大力推进工程量清单及计价管理随着市场经济的发展及铁路建设市场的完善,推行工程量清单计价势在必行。工程造价管理部门应抓紧制定与工程量清单计价规范相适应的配套措施,主要是制定和完善消耗量定额和综合单价信息,指导施工企业建立和完善企业定额,通过造价管理网络向社会发布工程的平均成本和造价指数。通过推进工程量清单及计价管理,做到建设工程量价分离,实现“控制量,指导价,竞争费”,即政府宏观调控、市场形成造价的目标。加快铁路工程造价信息化建设随着市场经济的不断发展,铁路建设的快速推进及铁路建设市场的日趋完善,市场信息的获取和掌握不但对造价管理部门非常重要,对建设单位和施工企业更为重要。传统的信息传递方式已不能适应形势发展的要求,必须加快建立基于计算机及网络技术的铁路工程造价信息系统。造价管理部门通过该系统发布建设主管部门颁布的招投标、工程造价管理及相关法规,市场价格信息等。建设单位等通过该系统及时掌握有关政策、市场信息等等。不仅对工程交易起到关健作用,同时也对合理确定和控制铁路工程投资起到重要重要,是提高铁路工程造价管理水平的重要手段,也是铁路建设现代化的必然趋势,必须进一步加快建设、完善和提高应用水平。5结束语当前,铁路工程造价管理面临新形势、新任务的挑战,不断完善铁路工程造价管理工作,构建适合市场经济体制和铁路高速发展要求的铁路工程造价管理体系,意义重大、势在必行。同时,构建和完善铁路工程造价管理新体系是一项复杂而长远的工作,需要造价管理、工程设计、建设管理等部门共同努力,不断总结探索、开拓创新。 迈入新世纪,具有中国特色的住宅开发建设正面临一场新的革命.倡导以人为本,天人合一的哲学观进行品牌定位,从规划设计,建筑设计,户型设计,建材采用,到功能和质量等方面要求越来越高,作为房地产开发企业首要的要求是工期短,投资效益好.针对房地产项目的这些情况,必须对项目投资实施全过程有效的成本控制,从组织,技术,经济,合同与信息等方面,挖掘潜力,降低成本,提高投资效益和社会效益. 本文针对影响工程造价比较大的设计阶段,招标投标阶段,施工阶段,竣工结算阶段的工程造价控制,发表一点拙见,起到抛砖引玉的作用,供广大同行商榷. 关键词: 工程造价 造价管理 一,设计阶段的成本控制 设计阶段是房地产项目成本控制的关键与重点.尽管设计费在建设工程全过程费用中比例不大,一般只占建安成本的,但对工程造价的影响可达75%以上,由此可见,设计质量的好差直接影响建设费用的多少和建设工期的长短,直接决定人力,物力和财力投入的多少.合理科学的设计,可降低工程造价10%.但在工程设计中不少设计人员重技术,轻经济,任意提高安全系数或设计标准,而对经济上的合理性考虑得较少,从根本上影响了项目成本的有效控制.例如:某高层住宅每层电梯井走廊仅十多米的距离,其间又无防火分区,就设了三只消防箱,而按消防规范要求,只要两支水枪同时到达室内任何部位即可.这种设计不合理,造成了一定浪费,显然是对工程的各种经济指标不够重视.因此,设计阶段对项目投资的影响是极其重要的.特别是扩初设计阶段对项目经济的影响达70-%95%,实际上,当扩初设计批复之后,存在的技术问题,费用问题都很难解决,因此必须重视扩初设计,以避免"先天不足". 1.推行设计招标,择优选择设计单位 积极推行建筑方案与经济方案相结合的设计招标方法,尽量将工程主体及配套的围护,绿化等均放在一起进行招标,采用多家竞投,组织有关专家综合评比,这样既可优选出好的设计单位,又可促进设计方在项目整体布局,建筑造型使用功能上开拓创新,在降低工程造价上下功夫. 2.开展限额设计,有效控制造价 积极推行限额设计,健全设计经济责任制.设计人员应熟悉掌握建筑工程预算定额及费用定额,熟悉建筑材料预算价格,然后按项目投资估算控制初步设计及概算,再用初步设计概算控制施工图设计及概算.因此,各专业在保证功能及技术指标的前提下,必须制定双赢策略,合理分解和使用投资限额,融施工图设计和施工图预算为一体,把技术和经济有机结合起来.严格控制设计变更,以保证投资限额不轻易突破.房地产开发企业的工程造价管理人员应与设计部门积极配合,及时提供可靠的工程基础资料. 当前普遍存在着设计不精,深度不够的情况.这是增加工程造价的不确定因素.由于设计频繁变更,给工程造价控制带来一定的难度.依据开发经验和投资估算的要求,必须有效地确定设计限额(造价,三材消耗指标等),并建立奖惩考核激励机制.对哪个专业或哪一段突破了造价指标,必须分析原因,用设计修改的办法加以解决.克服那种只顾画图,不顾算帐的倾向,变"画了算"为"算了画".并利用同类建筑工程的技术指标进行科学分析,比较,优化设计,降低工程造价. 文秘杂烩网 桥梁工程学的发展主要取决于交通运输对它的需要。古代桥梁以通行人、畜为主,载重不大,桥面纵坡可以较陡,甚至可以铺设台阶。在有重载马车之后,载重量逐步加大,桥面纵坡也必须使之平缓。这时的桥梁材料仍以木、石为主,铸铁和锻铁很少使用。 从桥梁的原始雏形——堤梁(及在浅滩溪涧中筑起一个个石堤,堤间流水,人从石堤上跨越)、独木桥、浮桥(架设在船只上的桥)和石拱到现在超千米跨度的悬索桥,桥梁工程在几千年的时间里发展可谓翻天覆地。然而桥梁工程能拥有这翻天覆地的发展取决于工程材料和工程技术迅猛发展的有力推动。在原始社会里,懵然无知的古人类还只是追求有一个起身的洞穴和能填饱肚子的食物,还不会想到桥。然而随着社会的发展,人类文明的进步,交通的不断发展,人们开始创造了桥。然而那时工程材料的使用仅限于天然的木和石块,且工程技术非常落后,所以人们只能建造简单的桥——堤梁、独木桥和简单的石拱。世界上现存最古老的石桥在希腊的伯罗奔尼撒半岛,是一座用石块干垒的单孔石拱桥,距今3500年左右建成。我国古代桥梁工程技术的发展在当时处于世界领先地位。公元590——608年建造在河北省赵县(叫)河上留存至今的隋代敞肩式单孔圆弧弓形石拱桥,即赵州桥。该桥全长,桥面宽约10m,采用28条并列的石条砌成拱券形成。拱券矢高。拱上设有4个小拱,既能减轻桥身自重,又便于排洪,且更显美观。该桥无论在材料使用、结构受力、艺术造型和经济上都达到极高成就,是世界上最早的敞肩式拱桥,早于欧洲同类桥约1000年。近代土木工程的时间跨度为从17世纪中叶至20世纪中叶的300年间。这个时期内土木工程的主要特征有:——有力学和结构理论作为指导;——砖、瓦、木、石等结构建筑材料得到日益广泛的使用;混凝土、钢材、钢筋混凝土及早期的预应力混凝土得到发展;——施工技术进步很大,建造规模日益扩大,建造速度大大加快。在这个时期内,以下几件大事对桥梁工程的影响巨大: (1)意大利学者伽利略在1638年出版的著作《关于两门新科学的谈话和数学证明》中论述了建筑材料的力学性质和梁的强度,首次用公式表达了梁的设计理论。 (2)英国科学家牛顿在1687年总结了力学三大定律它们是土木工程设计理论的基础。 (3)瑞士数学家欧拉1744年出版《曲线的变分法》建立了柱的压屈理论,得到计算柱的临界受压力的公式,为分析土木工程结构物的稳定问题奠定了基础。 (4)1824年英国人阿斯普.丁取得了波特兰水泥的专利权,1850年开始生产。这是形成混凝土的主要材料,使得混凝土在土木工程中得到广泛应用。后来,在20世纪初,有人发表了水灰比等学说,才初步奠定了混凝土强度的理论基础。 (5)1859年发明了贝塞麦转炉炼钢法,似的钢材得以大量生产,并愈来愈多地应用于土木工程。 (6)1867年法国人莫尼埃用铁丝加固混凝土制成花盆,并把这种方法应用到工程中,建造了一座蓄水池,这是应用钢筋混凝土的开端。1875年他主持建造了第一座长16m的钢筋混凝土桥。 (8)1779年英国用铸铁建成跨度为的拱桥;1826年英国用锻铁建成跨度为177m的悬索桥;1883年美国建成世界上第一座大跨钢悬索桥——布鲁克林桥;1890年英国又建成两孔主跨达521m的悬臂式刚架桥,这样,现代桥梁3种基本形式(梁桥、拱桥、悬索桥)相继出现。 自从有了铁路以后,桥梁所承受的载重逐倍增加,线路的坡度和曲线标准要求又高,且需要建成铁路网以增大经济效益,因此,为要跨越更大更深的江河、峡谷,迫使桥梁向大跨度发展。石材、木材、铸铁、锻铁等桥梁材料,显然不合要求,而钢材的大量生产正好满足这一要求。 在技术方面,只是凭经验修桥,曾使19世纪80~90年代的许多铁路桥发生重大事故;从这时起,正在发展中的结构力学理论得到了重视,而在它的静力分析理论完全确立并广泛普及之后,桥梁因强度不足而造成的事故显然大为减少。 二十世纪以来,公路交通有很大发展。在内陆,需要在更多的河流、峡谷之上建桥。在城市中,以及在各种交通线路相交处,需要建造立交桥。在沿海,既需在大船通航的河口、海湾、海峡修建特大跨度桥梁,又需在某些海岛与大陆之间修建长桥。 由于更多新技术新材料的出现,现代桥梁工程的发展尤其迅速,世界各国相继建造出超千米的桥梁。世界上跨径最大的预应力混凝土斜拉桥——西班牙的卢纳巴里奥斯桥,跨径达440m,采用了双面辐射形密索布置. 世界第一的悬索桥——日本明石海峡桥,横跨日本内海,使日本神户与淡路岛紧紧相连.这座大桥全长3190M,中央跨度1990m于1998年竣工.它可以承受里氏级地震.目前中国在建的一批公路桥梁,无论是桥梁的数量还是工程规模、技术难度、科技含量,都代表着当今世界的先进水平,创造了中国建桥史之最。据悉,这些桥梁主要有:阳逻长江大桥,主跨1280米的悬索桥;南京长江三桥,主跨648米的斜拉桥;润扬长江公路大桥,跨江连岛的主跨1490米悬索桥和406米斜拉桥组合;深圳湾跨海大桥,主跨180米独塔单索面斜拉桥;苏通长江公路大桥,主跨1088米的斜拉桥,居世界第一;杭州湾跨海大桥,按双向六车道高速公路标准建设,全长36公里,是世上在建最长的公路跨海大桥。一个国家同时在建这么多世界级桥梁,在世界上不多见。 桥梁需要大量修建,而人力、物力、财力有限;于是,不断提高技术水平,引用新材料、新工艺、新桥式,对结构行为进行更精确的数值分析,采用更精确的结构试验进行验证,以使桥梁建设的经济效益不断提高,已成为时代的要求。 桥梁工程学主要研究桥渡设计,包括选择桥址,决定桥梁孔径,考虑通航和线路要求以确定桥面高程,考虑基底不受冲刷或冻胀以确定基础埋置深度,设计导流建筑物等;桥式方案设计;桥梁结构设计;桥梁施工;桥梁检定;桥梁试验;桥梁养护等方面。 在建桥材料方面,以高强、轻质、低成本为选择的主要依据,近期仍以发展传统的钢材和混凝土为主,提高其强度和耐久性。对于建筑钢材的脆断机理、初始几何缺陷等,以及混凝土材料的非弹性问题(收缩徐变以及疲劳等),将继续作充分的研究,使能正确控制结构的受力和变形。至于碳纤维塑料等在桥梁上的广泛应用,还必须在降低成本以后才有可能。 在桥梁勘察设计方面,随着交通事业的迅速发展,大跨度或复杂的桥型将不断涌现。高速公路的发展,对桥梁设计亦将提出新的要求。在桥式方案设计中,将有可能利用结构优化设计理论,借助电子计算机选出最佳方案。 在结构设计计算中,采用空间理论来分析桥梁整体受力已成为可能;以概率统计理论为基础的极限状态设计理论,将进一步反映在桥涵设计规范中,使桥梁设计的安全度得到科学合理的保证。桥梁美学作为时代、民族的文化在某些方面的反映,将愈来愈受到人们的重视:桥梁的面貌将蔚为大观。 在桥梁施工方面,对施工组织将充分利用电子计算机进行经济有效的管理。在施工技术中,将不断引用新技术和高效率、高功能的机具设备,借以提高质量、缩短工期、降低造价。如采用激光测量控制结构的精确定位;引用自升式水上平台克服深水基础的困难;利用遥控设备在沉井、沉箱中挖基,以减少劳动强度并避免人身危险;利用高质量的焊接技术,借能推广工地焊接等,此外,装配式桥梁也将有所发展,以使结构和构件标准化,生产工业化。 在桥梁养护维修方面,要求对既有桥梁建立完善的技术档案管理制度。在桥梁维修检查中,引用新型精密的测量仪表,如用声测法对结构材料的缺陷以及弹性模量进行测定;用手携式金相摄影仪检查钢材的晶体结构俾能及早进行加固防患于末然,以便延长桥梁的使用寿命。 桥梁工程始终是在生产发展与各类科学技术进步的综合影响下,遵循适用、安全、经济与美观的原则,不断的向前发展。人们除了要求桥的功能完善,还讲求桥的外形美观、有艺术性 ,桥梁地建造将更加复杂化,更加艺术化,桥梁的未来将更加多元化,是现代桥梁更现代,还是旧式桥梁的复兴,值得期待! 中国桥梁的历史可以上溯到6000年前的氏族公社时代,到了1000多年前的隋、唐、宋三代,古代桥梁发展到了巅峰时期。公元35年东汉光武帝时,在今宜昌和宜都之间,出现了架 设在长江上的第一座浮桥。 在秦汉时期,我国已广泛修建石粱桥。世界上现在是保 存着的最长、工程最艰巨的石粱桥,就是我国于1053一1059年 在福建泉州建造的万安桥,也称洛阳桥,此桥长达800米,共47 孔,位于“波涛汹涌,水深不可址”的海口江面上。此桥以 磐石铺遍桥位底,是近代筏形基础的开端,并且独具匠心地用养殖海生牡蛎的方法胶固桥基使成整体,此也是世界上 绝无仅有的造桥方法,近千年前就能在这种艰难复杂的水文 条件下建成如此的长桥,实是中华桥梁史上一次勇敢的突破。 我国古代石拱桥的杰出代表是举世闻名的河北省赵 县的赵州桥(又称安济桥),该桥在隋大业初年(公元605年左 右)为李春所创建,是一座空腹式的圆弧形石拱桥,净跨37m, 宽9m,拱失高度7.23m,在拱圈两肩各设有二个跨度不等的腹 拱,这样既能减轻桥身自重,节省材料,又便于排洪、增加美 观,赵州桥的设计构思和工艺的精巧,不仅在我国古桥是首屈一指,据世界桥梁的考证,像这样的敞肩拱桥,欧洲到19世纪中叶才出现,比我国晚了一千二百多年,赵州桥的雕 刻艺术,包括栏板、望柱和锁口石等,其上狮象龙兽形态逼 真,琢工的精致秀丽,不愧为文物宝库中的艺术珍品,我国 石拱桥的建造技术在明朝时曾流传到日本等国,促进了与世 界各国人民的文化交流并增进了友谊。 1240年建造的福建潭州虎渡桥,也是最令人惊奇的一 座粱式大桥,此桥总长约335m,某些石粱长达23.7m,沿宽度 用三根石粱组成,每根宽1.7m,高1.9m,重达200多吨,该桥一直 保存至今”历史记载,这些巨大石梁桥是利用潮水涨落浮运建 设的,足见我国古代加工和安装桥梁的技术何等高超。 广东潮安县横跨韩江的湘子桥(又名广济桥)此桥始 建于公元1169年,全桥长517.95m,总共20墩19孔,上部结构有 石拱、木梁、石梁等多种型式,还有用18条活船组成的长达 97.30m的开合式浮桥,设置浮桥的目的,一方面适应大型商 船和上游木排的通过,并且也避免了过多的桥墩阻塞河道, 以致加剧桥基冲刷而造成水害,这座世界上最早的开合式 桥,柱石桥之长、石墩之大、桥梁之多以及施工条件之困难 工程历时之久,都是古代建桥史上所罕见的。。 1957年,第一座长江大桥——武汉长江大桥的胜利建 成,结束了我国万里长江无桥的状况,从此“一桥飞架南北,天堑变通途”,桥的正桥为三联3X128m的连续钢桁粱,双 线铁路上层公路桥面宽18m,两侧各设2.25m人行道,包括引 桥在内全桥总长1670.4物,大型钢梁的制造和架设、深水管柱基础的施工等,对发展我国现代桥染技术开创了新路。 1969年胜利建成了举世瞩目的南京长江大桥,这是我国自行设计、制造、施工,并使用国产高强钢材的现代大型桥梁,正桥除北岸第一孔为128m简支钢桁粱外,其余为9 孔3联,每联为3x l60m的连续钢桁粱。上层是公路桥面,下层 为双线铁路,包括引桥在内,铁路部分全长6772m,公路部 分为4589m,桥址处水深流急,河床地,质极为复杂桥墩基础 的施工非常困难。南京长江大桥的建成显示出我国的建桥事 业已达到了世界先进水平,也是我国桥梁史又一个重要标 志。 在最近的1000年中,中国的桥梁技术全面落后于世界的脚步,中国第一座现代化桥梁的出现距今仅100多年历史,而且是由外国人建造的。从钱塘江大桥算起,中国人自己设计现代桥梁的历史还不足70年;从南京长江大桥算起,中国人自行设计建造大型桥梁的历史仅34年。而九十年代以来,中国桥梁的成就才使我们重新无愧于祖先地站到了世界前列,这是中国桥梁建设的伟大复兴时代。改革开放以来的20多年中,中国的桥梁建造技术取得了举世瞩目的成就,前十年为此做了经济上、技术上和人才上的准备,九十年代迎来了跨越式的发展。展望未来,随着中国经济的发展,一批更大的越江跨海工程的建设,中国桥梁将会创造更辉煌的成就。中华民族的伟大复兴,必将造就一代巨人去引领世界桥梁的未来。 1990年四川省在宜宾市建成的小南门桥,跨径达到240米,已是当时世界上中承式拱桥中跨径最大的一座。2001年11月7日,小南门大桥因吊杆锈蚀造成部分桥面跨塌,在修复过程中,技术人员对全桥进行了检测,大桥整体结构依然完好。小南门大桥所付出的代价是创新的代价,没有创新我们就不可能一睹1400年前的赵州桥。 1991年,四川省苍溪县建成了中国第一座钢管混凝土拱桥——旺苍大桥,跨径115米。在此之后的几年中,各地虽然兴建了不少钢管混凝土拱桥,但跨径始终在200米以下徘徊,直到1998年,广西壮族自治区建成了三岸邕江大桥,一举将此类桥梁的跨径提高到270米;1999年又建成了跨径220米的六景大桥。此后,在湖北、浙江和贵州等省,跨径在250米左右的钢管混凝土公路、铁路拱桥开始增多。 1995年贵州省瓮安县建成江界河大桥,首次突破了中国混凝土拱桥跨径 300米大关,达到330米,一举成为世界最大的桁式组合拱桥。不仅如此,其拱顶桥面至水面高度达263米,居中国各类桥梁之首。大桥一跨飞跃乌江天险,主孔分108个桁片预制,运用桁架伸臂法悬拼架设,两岸引孔为桁式刚构,全桥轻盈简洁,凌空飞渡,气势不凡。 1997年重庆万县长江大桥建成。大桥位于万州区(原万县市)黄牛孔处,是上海至成都高速公路跨越峡江天险的特大型拱桥。大桥一跨飞渡长江,全长 米,主拱圈为钢管混凝土劲性骨架箱型混凝土结构,主跨420米,桥面宽24米,为双向四车道,是1995年贵州省瓮安县建成江界河大桥,首次突破了中国混凝土拱桥跨径 300米大关,达到330米,一举成为世界最大的桁式组合拱桥。不仅如此,其拱顶桥面至水面高度达263米,居中国各类桥梁之首。大桥一跨飞跃乌江天险,主孔分108个桁片预制,运用桁架伸臂法悬拼架设,两岸引孔为桁式刚构,全桥轻盈简洁,凌空飞渡,气势不凡。 华夏第一桥——江阴长江公路大桥,是我国“八五”规划的“两纵两横”国道主干线中沿海主骨架的跨江工程,是目前 中国第一、世界第四大跨径钢悬索桥。大桥由桥塔、主缆、锚旋和钢箱梁等主要部件组成。大桥全长3071 米,主跨1385米;桥面宽33.8米,双向六车道,设计车速100公里/小时;通航净空为50米,可通行五万 吨级巴拿马型散货轮。江阴长江公路大桥的两根主索,各长2400多米,直径近1米,每根重1.4万 多吨,主索用127根直径5.3毫米的钢丝搅成索,再由169股钢索组成主索。主桥每边有85个吊杆,每个吊杆2根,用以连结主索和桥面。 两岸索塔标高为196.236米,相当于65层搂高。北塔基长43.5米,宽73.5米,下有123根近90米长的基础桩。北锚的混凝土陈井平面长69米,宽51米(面积相当于一片足球场大)。沉入地面58米,被称为世界第一大沉井。江阴长江大桥于1994年11月22日正式开工,1999年10月1日胜利通车,名列“中国第一,世界第四”。 改革开放以来的20多年中,中国的桥梁建造技术取得了举世瞩目的成就,前十年为此做了经济上、技术上和人才上的准备,九十年代迎来了跨越式的发展。展望未来,随着中国经济的发展,一批更大的越江跨海工程的建设,中国桥梁将会创造更辉煌的成就。中华民族的伟大复兴,必将造就一代巨人去引领世界桥梁的未来。 只要是桥梁工程类的学术论文就行 写作思路:可以根据现如今中国桥梁建设的发展水平进行阐述,可以从技术创新体制建设方面这个角度出发进行描述,中心要明确等等。 正文: 现如今,我国的桥梁建设事业飞速发展,如何利用现有的设备来满足人民对交通便利的需求,成为桥梁建设所要面对的主要问题。相信随着施工施工技术的发展、经验的积累及计算软件的普及,会出现更多更好的公路桥梁施工方法。 由于我国仍处于社会主义初级阶段,我国桥梁施工单位与其他一些企业一样,工作任务仍要靠上级直接下达命令,所要做的科研项目和技术改进还要靠有关部门立项拨款才可进行后续工作,而当桥梁施工完成后又往往束之高阁,只有一小部分能产生应有的可观效益。自从中国加入世贸组织以来,由于受国际关系的影响,我国桥梁建设行业与真正的国际标准要求还是存在很大的距离。这使得企业在桥梁施工的技术创新方面的紧迫感和积极性都大打折扣。 首先,在技术创新体制建设方面出现了缓慢进展的局势。虽然国家有关部门已经明令要求大型桥梁施工单位要建立以技术为中心的一种系统的创新体系,但仅仅有一小部分的企业响应了国家的号召,大部分桥梁施工单位仍选择维持旧有的施工技术体制,甚至有些企业仅仅在表面上建立了技术中心,而实际上却没有按新的体系运行。 其次,桥梁施工单位对技术创新工作的重视程度还是不够。由于施工建设市场的不完善和一些不良的施工风气的影响,许多人认为只要能拿下桥梁施工工程就可以把一系列的任务都能完成,这也就造成了他们重经营轻技术问题的产生。 除了以上两个方面,施工技术创新的投入还是不够。这也就导致了技术创新的积极性不够,多数桥梁施工单位对于科技的投入量不够,技术进步速度受到不同程度的影响,造成了产业升级相应滞缓。 施工人员可以利用强制式来对混凝土的拌制,需要注意的是拌制时间一定要达到施工要求,拌制时间既不能太长,也不能太短。因为搅拌时间如果过短,那么混凝土的混合将不会均匀,而搅拌时间如果过长,那么将会破坏混凝土原材料的结构。 同时,在混凝土搅拌的过程中,一定要严格的控制加水量和外加剂的用量。只有科学的控制水灰比例,减少混凝土的干缩量。只有把混凝土拌制均匀,才能达到混凝土的设计强度,从而满足桥梁施工的需要。 良好的混凝土施工技术不仅能降低混凝土内部的温度,还能减少混凝土的内外温差,这样会使由温度造成的裂缝产生几率得到降低。施工人员可以利用插入式振动器的振实来进行混凝土浇筑的过程,在这个环节,是不允许过振现象所导的混凝土表面粗、细集料离析而靠近模板的混凝土表面集料集中问题的出现,也要注意不可产生漏振而使混凝土表面产生麻面、蜂窝、孔洞、裂缝等质量问题。 在每次地振捣部位振动直到混凝土停止下沉不再冒出气泡、表面呈现平坦泛浆,才可以徐徐提起振动器。总之,混凝土的振捣应引起施工人员足够重视,只有混凝土振捣的结果符合要求,才能使桥梁的施工质量得到保证。 裂缝是桥梁施工的主要病害,那么对于防止裂缝产生的关键在于混凝土的养护。混凝土浇筑收浆完成后应及早进行洒水养护,保持混凝土表面处于湿润的状态。由于水泥在水化过程中产生很大的热量,混凝土空心板在浇筑完成后必须在侧模外喷水散热,以免混凝土由于温度过高,体积膨胀过大,在冷却后体积收缩过大产生裂缝。 在桥梁工程的施工期间,预应力的检查结果一切正常。但在后期的相邻标段的现浇梁施工时,却发现梁顶面的高程出现异常,这很可能是由于边墩顶内侧支座脱空造成的。在对桥梁预应力问题的处理中,桥梁施工单位面临着巨大的压力, 桥梁的基础、桥墩、现浇梁施工的各个工序都会造成预应力问题的发生。 在桥梁可以通车后,气温回升会造成桥梁弯处梁不同程度发生了支座脱空现象, 使桥面伸缩缝受到严重的损害而使路面无法正常行车。支座脱空的处理方法是十分困难和复杂的,需要将箱梁整体起顶后进行支座位移,同时要对墩帽及桥墩进行加宽处理,基础要增加钻孔桩。匝道被迫封闭,处理时间长达半年。 局部蜂窝问题的产生主要是因为混凝土结构强度大大降低了结构的严密性,其疏松的结构强度几乎达到了最低点。在桥梁的使用过程中,如果发生局部蜂窝问题,会导致它所承受能力极大地减少,并且遭受腐蚀而造成重大的损伤的几率更大,大大地降低了桥梁施工工程的承载力和耐久性。 现如今,我国的桥梁施工建设如火如荼,如何利用现有的施工技术来满足人民对交通便利的需求成为桥梁建设所要解决的主要问题。相信随着施工技术的发展、经验的积累,会出现更多更好的桥梁施工方法,为国家和人民的财产安全提供更有效的保障。 索结构在桥梁工程中的应用及基本防腐处理措施 摘要:研究目的:索结构在桥梁工程中得到了日益广泛的应用,其主要应用桥型范围是悬索桥、斜拉桥、拱桥、系杆拱桥等,索的构造也相应分为缆索、拉索及吊索等多种类型,根据桥梁索结构所处的环境条件,相应对其提出了很高的防腐性能要求。研究结论:索结构由于其优异的材料性能特点,在桥梁等多种工程中得到广泛应用,为保证长期安全使用,对索结构的防腐应采取综合工程措施。目前对构成索结构的材料采取的基本防腐处理措施主要为热浸镀锌和环氧喷涂处理。关键词:桥梁工程;索结构应用;腐蚀特点;防腐措施;热浸镀锌;环氧喷涂随着我国桥梁建造水平的提高,在对桥梁与运输服务的综合效益、与周边环境相协调的景观要求、与结构使用寿命相一致的耐久性设计等方面都提出了更高的要求,悬索、斜拉等桥型结构的应用日趋普遍,对索结构的防腐处理提出了新的要求与课题。1索结构在桥梁等工程中的应用特点索结构在桥梁工程中得到了日益广泛的应用,根据索的应用部位、结构受力及变形特点,主要包括缆索、拉索及吊索等多种类型,索的材料主要由钢丝束、钢绞线、钢丝绳等柔性构件构成,同时部分有类似功能要求的构件也可采用圆钢等(如小跨度吊桥的吊杆等),索结构在桥梁工程中的主要应用桥型结构范围是悬索桥、斜拉桥、拱桥、系杆拱桥等,其中包括悬索桥的主缆索和吊索、斜拉桥的斜拉索、拱桥及系杆拱桥的吊索、水平拉索(明索)等,对于一些桥梁结构的特殊处理(包括施工过程中的临时受力需要)及旧桥加固等有时需采用体外索的处理形式,也属索结构在桥梁工程中的应用范围。另外,也有一些诸如预应力锚索等也在包括桥梁等很多工程中得到日益广泛的应用,特别在水电、高挡墙路基、桥梁以及其它各种加固工程等应用十分广泛,对保证工程安全、有效控制工程投资发挥了重要作用,尽管有些严格从结构特点上判断不属于索结构,但从防腐处理考虑则很多具有类似的技术要求。对不稳定的岩(土)体采用预应力锚索体系进行整体加固已成为目前基本选择和常规做法,工艺上也具备愈加成熟的特点,在道路工程设计施工中也常常面临高路基工程,从满足受力要求、节省工程量、节约占地需求、降低工程投资、改善外观效果等方面考虑,自立互锚(或半自立锚固)混凝土挡土墙也应用较多,山区地形条件更是如此,桥梁工程中也有较多应用工程实例,以切实保证结构安全及设计合理,如在万州长江二桥的锚碇结构设计中,根据工程地质条件,为保证结构安全及有效控制工程量,锚碇前端采用了预应力岩锚体系。目前,从桥梁跨度、桥型构造特点、结构美观、施工条件等各种因素综合考虑,索结构在桥梁工程中的应用前景十分广泛,包括永久工程及临时工程等,尤其是钢索的柔性结构特点对施工可以带来很大便利,而随着材料科学的不断发展,用于索结构的主要材料钢丝、钢绞线、钢丝绳等材料强度不断发展、规格系列越发齐全、防护水平显著提高,同时设计计算分析水平及施工操作水平也迅猛提高,以上各种条件变化为索结构在桥梁工程中日益广泛的应用创造了良好条件。根据腐蚀条件及长期使用经验,对包括桥梁用各类索结构的防腐处理引起工程界愈加高度的重视,成为衡量桥梁工程设计施工质量、保证结构耐久性关键控制因素之一,结合有关防腐处理研究部门及相关生产厂家的共同努力,其防腐处理的工艺及技术水平也有了很大提高,除对索结构的基本材料钢丝、钢绞线等本身外表面必须进行必要的防腐处理,通常采用热镀锌或环氧涂层防护等处理措施,还需对成型后的缆索或索股等采用其它防护处理措施,为切实保证其有效防护使用年限要求、提高整个工程的使用性能条件提供良好保证。对由平行钢丝或钢绞线构成的各种拉索、吊索等构造,其成型规格尺寸通常不是很大,一般外表面采用热挤PE进行防护,应在工厂进行专业化施工,同时PE材料也具备较好的现场修补条件,热挤PE有单层或双层构造,外层有多种色彩选择,可以满足防护及景观效果等多方面要求;悬索桥主缆在成桥后需对其采取综合防护处理,有较高技术要求;对于由钢丝绳构成的索结构通常可采用涂装或油脂防护;此外,对索结构的锚固与其它构造的衔接处理也高度重视,采取了一系列工艺改进措施。2桥梁索结构应用中存在的主要问题由于索结构基本为体外构造,暴露于大气环境之中,处于十分不利的腐蚀环境条件,因此,用于桥梁工程时必须充分考虑其很高的防腐性能要求,不仅包括索的自身防腐处理,对其与相关构造的衔接处理也需予以高度重视,且在很多情况下成防腐薄弱环节及影响结构安全的控制因素,必须采取有效措施切实保证其耐蚀性要求,为确保结构整体安全创造有利条件。在以往国内外桥梁工程设计施工中,尽管针对索的防护重要性有一定认识,通常也都采取了相应的防护处理措施,但由于受当时防护处理技术水平、认识水平及重视程度不够的制约影响,因而由于对索的防护处理不力、影响工程正常使用及需要进行返工处理的工程实例很多,而进行相应事故的处理投资费用很高,且费工费时,对正常交通一般也会造成很大影响,个别严重的还会造成工程报废,所造成的影响及损失更大,从结构特点及以往工程实例特点分析,其中斜拉桥出现的问题更多一些,由此造成了很大的直接及间接损失,拱桥的吊索也很容易发生类似问题。针对悬索桥结构而言,对其主缆的防护历来十分重视,通常除对材料本身进行必要的防护处理外,对成型后的缆索外表面通常还会采取一系列其它防护处理措施(结构封闭及涂装处理),使之缆索处于相对封闭状态,同时主缆的受力特点也决定了其受力条件较为均匀,应力幅度变化相对不大,两端连接锚头基本采用工艺成熟的热铸锚工艺,材料性能匹配较好,通常不会出现腐蚀局部薄弱环节,基于以上特点,悬索桥由于主缆防护处理不利出现重大工程事故的不多,因而就主缆防护存在一定的重视不够或认识不足之处,在较长一段时间就此方面的技术发展进步相对不大,但并不表明其缆索的的防护处理就不存在技术问题。由于大跨度悬索桥对主缆索进行了封闭处理,进行相应检查较为困难,有些问题不能及时发现和暴露出来,但近年来美国、日本等国家对以往修建的大跨度悬索桥主缆索进行的相关检查(拆除外表面涂装及缠丝后)中发现,其主缆钢丝的锈蚀现象较为严重和普遍,主要原因是虽然对钢丝自身及缆索外表面进行了相关的防护处理,但外表面防护处理仍难以完全避免外部水汽浸入,防护涂层的龟裂及索鞍、索夹等防水薄弱环节的存在是主要原因,而水汽一旦浸入则很难顺利排出,由此形成主缆内部湿度很大,严重恶化了其腐蚀环境,造成钢丝锈蚀,因而近年来除该改进缠丝材料构造及工艺、采取进一步的封闭措施外,还考虑采用必要的除湿设备,当然工程投资会有所增加,但考虑长期使用目的仍是必要的。我国进行现代意义的大跨度悬索桥建设时间不长,各桥梁工程对主缆也尚未进行相关检查,有些可能出现的问题也尚未暴露出来,但借鉴国外经验,对主缆防护采取各种加强措施仍是十分必要的。国内外桥梁工程由于对索的防护处理不利造成较大影响及损失的主要工程实例有:德国汉堡的Kohl-brand Estruary桥,由于斜拉索腐蚀严重,建成的第三年就更换了全部的斜拉索,耗资达6 000万美元,是原来斜拉索造价的4倍;委内瑞拉的Maracibo桥,建于1958~1960年间,受当时技术水平制约,其斜拉索没有进行镀锌处理,采用一般的涂漆防护,经过不断的风雨侵蚀,斜拉索锚头处的锚箱罩盖率先损坏,进而使得斜拉索与上锚箱的接口处发生锈蚀,且相当一部分锈蚀十分严重, 1979年发生个别斜拉索断裂,因此决定对全桥斜拉索进行更换,全部进行镀锌处理,并采用了含有铅质的酚醛树脂糊膏进行表面防护,且换索后拉索根数增加一倍;我国广州海印大桥于1988年年底建成, 1995年起陆续发生索股断裂及松断事故,调查表明产生的主要原因是管道压浆工艺未能保证拉索顶部灌注饱满,造成拉索直接与空气接触进而发生锈断,为防止事故的进一步发生,被迫进行全桥换索工程,耗资大量资金及时间; 2001年11月7日,宜宾南门大桥(拱桥)倒塌,事故调查发现拉索已经发生严重生锈;此外,国内外还有许多斜拉桥建成后陆续进行了局部换索或其它处理。美国在1903年建世界上第一座现代化长跨度悬索桥W illiamsburg桥,受当时技术水平和造价制约,没有对钢丝进行镀锌处理而采用一般防护,建成后仅7年就发现钢丝锈蚀断裂, 1922年对缆索补缠镀锌钢丝,但1934年又发现主缆内有水从锚碇处流出,虽陆续采取了多种处理方案,但都没有能够阻止锈蚀发展, 1992年开始被迫进行为期3年的主缆维护工作,耗资7 300万美元。3索结构的腐蚀特点索结构在桥梁工程的应用环境特点基本处于高空之中,主要的腐蚀环境是大气环境腐蚀,在高纬度地区,对悬索桥主缆索通常还要考虑到积雪对缆索的影响。目前构成桥梁索结构的材料基本为高强度钢丝或钢绞线组成,另外钢丝绳在悬索桥吊索中也有较多应用,而钢绞线或钢丝绳也是由不同直径的钢丝在工厂再加工而成,因此高强度钢丝是桥梁工程中索结构的最基本材料,属冷拨碳素钢,包括强度等各项技术指标不断取得提高,目前在不进行镀锌处理等条件下其标准强度多为1 860MPa,而2 000MPa及以上标准是今后的发展方向,且多采用低松弛系列,能够更好地适应工程实际需要,同时,在对钢丝进行镀锌处理过程中,钢丝表面会有一定损伤,因此镀锌钢丝(或钢丝绳)的抗拉强度等有所降低,目前相关标准中通常采用1 600~1 700MPa。由于钢丝的含碳量较高,通常在0. 75% ~0. 85%之间,因此塑性条件相对较差,在没有进行防护的条件下其抗腐蚀性很差,造成钢丝自身腐蚀的主要原因包括应力腐蚀及疲劳腐蚀:应力腐蚀是材料在一定环境中由于外加或本身残余的应力,加之腐蚀的作用,导致金属的早期破裂现象,金属的应力腐蚀破裂主要是对应力腐蚀较为敏感的合金上发生,纯金属很少产生,合金的化学成分、金相组织、热处理对合金的应力腐蚀破裂有很大影响,处于较高应力状态情况下,包括材料内部各种残余应力、组织应力、焊接应力或工作应力在内,且基本为拉应力影响,可以引起应力腐蚀破裂,防止应力腐蚀破裂的主要方法是消除或减少其应力状况,并且通过改变介质的腐蚀性(添加缓蚀剂),选用耐应力腐蚀破裂的金属材料,从而避免相关腐蚀的出现;疲劳腐蚀是钢铁在交变应力作用和腐蚀介质的共同作用下产生的一种腐蚀现象,同时也是在桥梁工程的索结构中发生较为普遍、概率较大的腐蚀现象,减少疲劳腐蚀的主要方法是选择适应相关腐蚀环境的抗腐蚀的材料,同时对材料表面进行镀锌、涂漆等方法减轻疲劳腐蚀的作用。桥梁工程设计施工过程中,针对索结构的应用,从保证其使用安全考虑通常都留有相对较大的安全系数,不同的索结构及材料类型对相应的安全系数有具体要求,尽管如此,各种索结构通常仍是在较高的应力状态下工作的,虽然对于工作疲劳应当没有影响,但是在高应力状态下,腐蚀介质和应力的相互发生作用,如果不进行合理有效的防护处理,其腐蚀是非常容易发生的,腐蚀发生将会大大影响钢丝的受力性能,同时从桥梁工程的构造特点考虑,索结构与其它构造的衔接部位通常也是最易受腐蚀的薄弱的地方,同时悬索桥的主缆索在锚碇范围是通过散索鞍后散开在锚室内进行锚固,而锚碇为地下结构,无论采用何种锚碇构造,锚室内的空气湿度通常都很大,对包括缆索及各种连接构件的防腐都十分不利,目前,在锚碇洞室内通常还需设置排水及除湿设备,以改善洞室内的腐蚀环境条件。1967年12月,美国西弗吉尼亚州和俄亥俄州之间的俄亥俄大桥突然倒塌,事故调查的结果就是因为应力腐蚀和腐蚀疲劳产生的裂缝所致。4钢丝的热浸镀锌处理热浸镀锌工艺在桥梁工程中得到了广泛应用,尤其是在各类索结构的防腐处理中应用更是极为普遍,是目前对钢丝防腐处理的常规工艺方法,对钢丝进行热浸镀锌可以有效防止或减小索结构在制造、运输、架设以及使用过程中的锈蚀,结合其它合理的防腐处理措施,切实保障其耐蚀要求,进而为整个工程的安全长期使用提供良好条件。热浸镀锌工艺已有较长的发展历程,用于钢丝防护主要是随着现代悬索桥的建设而得到发展并逐步扩大其应用范围,美国是世纪上建造现代悬索桥最早的国家,在20世纪30年代就开始在悬索桥上使用主缆及吊索系统用镀锌钢丝,比如世界闻名的金门大桥,而一些没有使用镀锌钢丝的桥梁多因应力腐蚀或腐蚀疲劳而不得不后期进行换索加固。热浸镀锌即是把钢铁浸入温度达440~465℃或者更高温度的熔化锌中进行处理的过程,铁基体与熔锌反应,形成铁-锌合金层覆盖在整个工件表面,镀锌表面有一定的韧性,可耐很大的摩擦及冲击,同时与基体有着良好的结合,钢丝热浸镀锌的基本工艺流程为:除油→水洗→酸洗→水冲洗→熔剂处理→烘干→热镀锌→后处理→收线→成品。热浸镀锌的镀层厚度通常在50~250μm,对于钢丝要求其锌层重量控制在300g/m2以上,同时对附着力按有关要求进行严格的检查控制,镀锌质量保证主要的控制因素包括表面基材处理效果、助熔方式、镀锌时间、引出方式、引出后的处理(锌层均匀性及表面效果)等。5环氧树脂涂层处理5. 1基本材料特点及应用条件环氧树脂是由环氧氯丙烷和双酚基丙烷在碱作用下缩聚而成的高聚物,含有极性高而不易水解的脂肪基和醚键,涂膜的耐化学性好,其结构是刚性的苯环和柔性的烃链交替排列,物理机械性能良好,同时其固化时体积收缩率低,可避免由于内应力的产生影响附着力,由于环氧树脂属热固性树脂,其固化后形成的三维交联的主体结构会导致其很少有分子键滑动,因而使用中需增加其韧性指标,通常可采用胺类固化剂,有机多元胺在常温条件下能与环氧树脂交联固化,所形成的涂膜具有良好的附着力及硬度指标,同时具有耐脂肪烃溶剂性、耐稀酸(碱)性和耐盐水性,防腐性能十分理想。当需要防护处理的金属结构等处于较为特殊的使用环境条件(如埋于地下土层当中等),根据其腐蚀特点及对防腐材料的性能特点要求,可针对配方作进一步改进以满足相关的使用要求。由于煤焦沥青含有环烃结构,如酚或塞酚之类具有很好的抗腐蚀细菌功能,同时具有很好的水下不渗透性,因此,在环氧树脂防腐体系里加入煤焦沥青可使其具有一般环氧树脂所不具有的特性,可以有效提高涂层在土壤中的抗水渗透性及抗细菌腐蚀性能等,其涂料配方由环氧树脂、溶剂、固化剂、填料等组成。根据实际使用环境条件的不同,钢铁等金属材料的腐蚀过程及腐蚀类型较为复杂多样,主要为化学腐蚀及电化学腐蚀等,为保证其使用耐久性及结构安全,必须进行防腐处理,对涂膜的基本质量要求包括涂膜厚度的合理选择、附着力、耐皂化性能、化学耐久性、耐冲击性等。采用环氧树脂涂层防护处理对工艺设备的要求很高,其应用于桥梁等工程的防护处理在美国、日本等国家发展起步较早,国内近年来也发展很快,由于需进行专业化生产的特点,已有部分生产厂家引进了必要的技术和设备,通过消化吸收具备了相应的生产能力。目前在桥梁等工程上应用最多的是环氧喷涂钢绞线(简称SC钢绞线),由于工艺处理复杂,技术要求高,因而其造价相对较高,但由于其优良的防腐性能条件和技术优势使之具备广阔的发展应用前景,主要应用于斜拉索、吊索、桥梁体外索加固、岩(土)体加固及一些地下工程等对防腐性能要求很高的工程,也可用于常规工程,用于桥梁等工程后防腐年限大幅度提高,结构安全更有保障,同时可以有效避免或减少后期损失,如斜拉桥曾较多地发生断索等工程事故需要进行更换处理,其换索施工不仅对正常交通造成很大影响,而且所需费用十分昂贵,各种损失巨大。5. 2SC钢绞线主要技术特点随着高强度预应力钢绞线在包括桥梁等许多工程中日趋广泛的应用,特别是根据各类索结构的构造形式、应用环境特征、腐蚀特点,同时考虑在保证工程整体寿命及结构安全方面的重要作用,对其防腐效果及耐久性提出了越来越高的要求,防腐处理技术的相应发展是其关键,为从根本上有效解决钢绞线的防腐耐久性问题,环氧树脂涂层预应力钢绞线(英文名称 Strand,故简称SC钢绞线)技术得到了很快的发展及应用,从涂装操作特点考虑属粉末涂装法,常用的粉末涂装主要有流动浸渍法和静电喷涂法, SC钢绞线系采用高压静电喷涂法将环氧树脂粉末喷射于钢绞线各根钢丝上,然后加热熔融、固化、冷却,从而在组成钢绞线的各根钢丝外表面形成一层致密的环氧涂膜,为实现这一目标,喷涂前需将钢绞线各根钢丝暂时打散,喷涂后再将其复扭成型。以前对钢绞线的防腐处理通常采用镀锌钢绞线、外表面整体进行树脂填充及涂装环氧层、普通钢绞线外侧设热挤PE防护层等处理方法,而SC钢绞线则是对组成钢绞线的各根钢丝外表面都进行环氧涂膜处理,要求环氧涂膜层有良好的致密性及厚度均匀,因此称之为全涂装钢绞线。SC钢绞线系与其它防腐处理类型的钢绞线的主要区别是由于所用的防腐材料与工艺上的不同,从而造成其防腐效果及钢绞线机械性能方面的较大差异,一般钢丝或钢绞线经镀锌处理后,由于镀锌过程对钢丝表面不可避免地产生一定损伤,因而机械性能均有所下降,体现在设计中的影响主要是强度指标需要降低,另外,镀锌钢绞线表面锌层被刮伤后,刮伤处会产生阴极电化学反应,从而加快腐蚀的发生,其它防腐处理方式也存在一定的薄弱之处,包括防腐效果、物理特性变化、锚具要求、与混凝土的附着效果、对施工操作的影响等方面, SC钢绞线主要技术特点如下:对构成钢绞线的各根钢丝都进行了充分的表面材质调整,各根钢丝一边旋转一边进行涂装处理,与其它涂装法比较,其膜层厚度较薄(平均120 ~180μm)且均匀,同时致密性好,耐磨性强,可靠性高,具有良好的耐离子渗透、耐化学品、耐电压、耐紫外线辐射、耐疲劳性能等基本特点,综合防腐效果十分理想,应用前景广阔。与涂装前的普通钢绞线相比, SC钢绞线的强度及柔软性没有降低,同时,由于涂装处理时的温度不高,不会出现镀锌处理造成的强度损失较大的特点,其强度指标与不涂装钢绞线基本没有区别,松弛率也可保证,十分有利于设计施工控制。普通钢绞线即使出厂不久,局部仍易产生锈蚀或浮锈,而在存放时间较长、保护措施不利条件下或由于施工养护等方面的原因,极易发生较为严重的腐蚀现象,甚至导致报废,而SC钢绞线在制造时需在打散情况下对各钢丝进行表面防腐处理,成型后不会出现防腐蚀薄弱部位,不会发生锈蚀现象,合理的操作可充分保证其涂膜质量。涂装处理后的SC钢绞线较原基材外径变化很小,目前所用的常规锚具、夹片仍可适用,无需另行采用专用锚具,有利于方便施工、合理控制投资。由于膜层厚度相对较薄, SC钢绞线的涂装材料用量较少,有条件作到价格更为合理,现场施工通常不会另行增加费用,目前主要在于出厂价格相对较高,其主要原因在于对设备、技术及操作工艺要求很高等方面因素,同时国内能够生产的厂家也有限,随着普及率的不断提高及各方面条件的不断改善,其价格也会相应降低。6结论(1)索结构由于其优异的材料性能特点,在桥梁等多种工程中得到广泛应用,同时,随着设计施工技术及材料工艺不断发展,其应用范围日益扩大,在工程建设中发挥着极为重要的作用,特别在大型工程建设中具有难以替代的作用。(2)为保证制造质量及精度要求,降低现场工作量及难度,进行工厂化生产制造是主要应用发展方向,应根据工程特点进行合理选择,包括合理的锚固连接构造。(3)根据材料自身及使用环境特点,为保证工程长期安全使用,避免或减少各种损失,对索结构的防腐必须高度重视,采取相应工程处理措施。(4)对索结构的防腐应采取综合工程措施,随着技术进步及认识程度的不断提高,在此方面已取得很大发展。除对索体材料自身进行必要的镀锌、环氧喷涂等措施外,对成型后的索体结构进行热挤PE及其它防护处理措施,可取得良好防腐效果。参考文献:[1]中华人民共和国交通部.公路悬索桥设计规范(报批稿)[S].[2]JTJ 027—96,公路斜拉桥设计规范(试行)[S].[3]GB/T 21073—2007,环氧涂层七丝预应力钢绞线[S].[4]唐清华,郑史雄.斜拉桥与悬索桥的防腐[ J].四川建筑, 2005(1): 125-126.连续箱梁桥上部结构毕业论文
道路桥梁工程造价毕业论文
路桥造价毕业论文
道路桥梁专业桥梁设计毕业论文