首页 > 论文发表百科 > 研究生数学建模历年题目和论文

研究生数学建模历年题目和论文

发布时间:

研究生数学建模历年题目和论文

018年全国研究生数学建模竞赛题目

2018年全国研究生数学建模竞赛题目:链接:

A题:跳台跳水体型校正系数的建模分析

论文1  论文2  论文3  论文4  论文5  论文6

B题: 光传送网建模与价值评估

论文1  论文2  论文3   论文4  论文5  论文6  论文7

C题: 对恐怖袭击事件记录数据的量化分析

论文1  论文2  论文3  论文4  论文5  论文6  论文7

D题: 基于卫星高度计海面高度异常资料获取潮汐调和常数方法及应用

论文1  论文2  论文3  论文4   论文5   论文6  论文7  论文8

E题: 多无人机对组网雷达的协同干扰

论文1  论文2  论文3  论文4  论文5

F题: 增设卫星厅的登机口分配问题

论文1  论文2  论文3  论文4  论文5  论文6

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。关于数学方面的论文我们可以写哪些呢?下面我给大家带来关于数学方向的优秀论文题目有哪些,希望能帮助到大家!

最全组合数学论文题目

1、并行组合数学模型方式研究及初步应用

2、数学规划在非系统风险投资组合中的应用

3、金融经济学中的组合数学问题

4、竞赛数学中的组合恒等式

5、概率 方法 在组合数学中的应用

6、组合数学中的代数方法

7、组合电器局部放电超高频信号数学模型构建和模式识别研究

8、概率方法在组合数学中的某些应用

9、组合投资数学模型发展的研究

10、高炉炉温组合预报和十字测温数学建模

11、证券组合的风险度量及其数学模型

12、组合数学中的Hopf方法

13、PAR方法在组合数学问题中的应用研究

14、概率方法在组合数学及混合超图染色理论中的应用

15、一些算子在组合数学中的应用

16、陀螺/磁强计组合定姿方法的相关数学问题研究

17、高中数学人教版新旧教材排列组合内容的比较研究

18、生物絮凝吸附-曝气生物滤池组合工艺处理生活污水的数学模拟研究

19、基于数学形态学-小波分析组合算法的牵引网故障判定方法

20、证券组合投资的灰色优化数学模型的研究

21、一些算子在组合数学中的应用

22、概率方法在组合数学中的应用

23、组合数学中的Hopf方法

24、概率方法在组合数学中的某些应用

25、概率方法在组合数学及混合超图染色理论中的应用

26、竞赛数学中的组合恒等式

27、Stern-Lov醩z定理及在组合结构中的应用

28、几类特殊图形的渐近估计及数值解

29、Fine格路和有禁错排

30、基于DFL的Agent自主学习模型及其应用研究

31、基于DFL的多Agent自动推理平台设计

32、预应力混凝土斜拉桥施工监控概率方法研究

33、最大概率方法与最近邻准则下的图像标注

34、亚式期权定价的偏微分方程方法和概率方法

35、编目空间碎片的碰撞概率方法研究及应用

36、基于概率方法的机器人定位

37、民用建筑内部给水设计秒流量的概率方法研究

38、图论中的组合方法和概率方法

39、物理概率方法预估贮存寿命研究

40、静载下结构参数识别的误差分析和概率方法

41、概率方法在组合计数证明中的应用

42、基于非概率方法的结构全寿命总费用评估

43、概率方法在组合数学中的应用

44、概率方法与邻点可区别全染色的色数上界

45、既有钢筋混凝土结构耐久性评定的概率方法

46、概率方法在多任务EEG脑机接口中的应用研究

47、应用概率方法对居住小区给水设计秒流量的推求

48、概率方法与图的染色问题

49、概率方法对居住小区设计秒流量的推求

50、概率方法在组合数学中的某些应用

51、概率方法在组合恒等式证明中的应用

52、遗传算法的研究与应用

53、基于空间算子代数理论的链式多体系统递推动力学研究

54、关于Weidmann猜想及具有转移条件微分算子的研究

55、实数编码遗传算法杂交算子组合研究

56、基于OWA算子理论的混合型多属性群决策研究

57、序列算子与灰色预测模型研究

58、具有转移条件的Sturm-Liouville算子和具有点作用的Schrodinger算子谱分析的研究

59、高精度径向基函数拟插值算子的构造及其应用

60、多线性算子加权Hardy算子与次线性算子的相关研究

数学建模论文题目

1、高中数学核心素养之数学建模能力培养的研究

2、小学数学建模数字化教学的设计与实施策略——以“自行车里的数学问题”为例

3、培养低年段学生数学建模意识的微课教学

4、信息化背景下数学建模教学策略研究

5、数学建模思想融入解析几何的实际应用探讨

6、以数学建模为平台培养大学生创新能力的SWOT分析──以内蒙古农业大学为例

7、基于高等数学建模思维的经济学应用

8、以数学建模促进应用型本科院校数学专业的发展

9、高等代数在数学建模中的应用探讨

10、融入数学建模思想的线性代数案例教学研究

11、以“勾股定理的应用”为例谈初中数学的建模教学

12、经管概率统计中的数学建模思想研究——评《经管与 财税 基础》

13、数学建模实例——河西学院校内充电站最佳选址问题

14、基于数学建模探讨高职数学的改革途径

15、大数据时代大学生数学建模应用能力的提升研究

16、“数学写作之初见建模”教学设计及思考

17、大学数学教学过程中数学建模意识与方法的培养简析

18、基于建模思想的高等数学应用研究

19、小学数学建模教学实践

20、依托对口支援平台培养大学生的数学建模能力

21、跨界研究在数学建模教与学中的应用

22、基于结构参数的机织物等效导热率数学建模

23、数学建模对大学生综合素质影响的调查研究

24、计算机数学建模中改进遗传算法与最小二乘法应用

25、数学建模在高中数学课堂的教学策略分析

26、发动机特性数字化处理与数学建模

27、数学建模中的数据处理——以大型百货商场会员画像描绘为例

28、数学建模竞赛对医学生 学习态度 和自学能力的影响

29、数学建模思想与高等数学教学的融会贯通

30、试论数学建模思想在小学数学教学中的应用

31、浅析飞机地面空调车风量测控系统数学建模及工程实施

32、高中数学教学中数学建模能力的培养——基于核心素养的视角

33、注重数学建模 提炼解题思路——对中考最值问题的探究

34、在数学建模教学中培养思维的洞察力

35、刍议数学建模思想如何渗透于大学数学教学中

36、数学建模竞赛背景下对高校数学教学的思考

37、数学建模课程对高职学生创新能力的培养探究

38、高等数学教学中数学建模思想方法探究

39、初中数学教学中数学建模思想的渗透

40、无线激光通信网络海量信息快速调度数学建模

41、基于多元线性回归模型的空气质量数据校准——2019年大学生数学建模竞赛D题解析

42、中学数学建模教学行为探究

43、数学建模竞赛成果诊断倒逼教学资源库优化的机制研究

44、基于数学建模活动的高校数学教学改革

45、数学建模与应用数学的结合研究

46、谈初中数学建模能力的培养

47、数学建模在初中数学应用题解答中的运用

48、基于数学建模思想的高等数学 教学方法 研究

49、数学建模融入高等数学翻转课堂模式研究

50、数学软件融入数学建模课程教学的探讨

最新小学数学教学论文题目

小学数学教材问题探析

小学数学生活化教学研究

小学数学___教学方法有效性分析

小学数学多媒体课件设计研究

小学生数学思维培养探究

小学数学中创新意识的培养

数学作业批改中巧用评语

新课标下小学数学教学改革研究

数学游戏在小学数学教学中的应用

《9和几的进位加法》教学设计

小学数学教学中素质 教育 研究

小学数学学困生的转化策略

小学数学教学中的情感教育

《六的乘法口诀》教学 反思

浅谈数学课堂中学生问题意识的培养

问答式学习课堂教学怎样转向小组合作学习

浅谈农村课堂的有效交流

浅谈在实践活动中提高学生解决实际问题的能力

浅谈小学应用题教学

浅谈学生合作意识的培养

“层次性体验”在数学课堂中的应用

数学课堂教学中学生探索能力的培养

小学数学低段学生阅读能力培养点滴

“观察、 品味、 顿悟” 我谈小学数学空间与图形教学

浅谈小学数学课堂教学中的“留白”

润物细无声--小班化数学作业面批有效策略的尝试

“我的妈妈体重 50 千克” 对培养良好数感的思考

“圆的面积” 教学一得

利用图解法解决逆推题

我教《24 时计时法》

《解简易方程》 教学反思

“可能性” 的反思

折线统计图折射出的“光芒”

《平均数》 教学反思

数学课堂上的“失误“也是一种资源

幽默语言在教学中的应用

“圆的认识” 教学片断与反思

计算机多媒体与小学数学教学的整

充分发挥学生的主体作用

“圆柱的体积” 教学反思

“平行四边形的面积” 听课反思

听“逆向求和应用题” 有感

小学低年级教学策略的实践与反思

“相遇问题” 建立“数学模型”

如何提高课堂语言评价的有效性

“20 以内退位减法” 教学反思

关于数学方向的优秀论文题目相关 文章 :

★ 关于数学专业毕业论文题

★ 数学方面毕业论文题目参考大全

★ 关于数学专业毕业论文题目参考

★ 数学的优秀论文

★ 数学优秀论文范文

★ 数学学术论文的题目

★ 数学教育论文题目

★ 数学教育方向的论文范文

★ 数学教育方向相关论文(2)

优秀历年数学建模论文题目

数学建模--教学楼人员疏散--获校数学建模二等 数学建模人员疏散本题是由我和我的好哥们张勇还有我们区队的学委谢菲菲经过数个日夜的精心准备而完成的,指导老师沈聪.摘要 文章分析了大型建筑物内人员疏散的特点,结合我校1号教学楼的设定火灾场景人员的安全疏散,对该建筑物火灾中人员疏散的设计方案做出了初步评价,得出了一种在人流密度较大的建筑物内,火灾中人员疏散时间的计算方法和疏散过程中瓶颈现象的处理方法,并提出了采用距离控制疏散过程和瓶颈控制疏散过程来分析和计算建筑物的人员疏散。 关键字 人员疏散 流体模型 距离控制疏散过程 问题的提出教学楼人员疏散时间预测学校的教学楼是一种人员非常集中的场所,而且具有较大的火灾荷载和较多的起火因素,一旦发生火灾,火灾及其烟气蔓延很快,容易造成严重的人员伤亡。对于不同类型的建筑物,人员疏散问题的处理办法有较大的区别,结合1号教学楼的结构形式,对教学楼的典型的火灾场景作了分析,分析该建筑物中人员疏散设计的现状,提出一种人员疏散的基础,并对学校领导提出有益的见解建议。 前言建筑物发生火灾后,人员安全疏散与人员的生命安全直接相关,疏散保证其中的人员及时疏散到安全地带具有重要意义。火灾中人员能否安全疏散主要取决于疏散到安全区域所用时间的长短,火灾中的人员安全疏散指的是在火灾烟气尚未达到对人员构成危险的状态之前,将建筑物内的所有人员安全地疏散到安全区域的行动。人员疏散时间在考虑建筑物结构和人员距离安全区域的远近等环境因素的同时,还必须综合考虑处于火灾的紧急情况下,人员自然状况和人员心理这是一个涉及建筑物结构、火灾发展过程和人员行为三种基本因素的复杂问题。随着性能化安全疏散设计技术的发展,世界各国都相继开展了疏散安全评估技术的开发及研究工作,并取得了一定的成果(模型和程序),如英国的CRISP、EXODUS、STEPS、Simulex,美国的ELVAC、EVACNET4、EXIT89,HAZARDI,澳大利亚的EGRESSPRO、FIREWIND,加拿大的FIERA system和日本的EVACS等,我国建筑、消防科研及教学单位也已开展了此项研究工作,并且相关的研究列入了国家“九五”及“十五”科技攻关课题。一般地,疏散评估方法由火灾中烟气的性状预测和疏散预测两部分组成,烟气性状预测就是预测烟气对疏散人员会造成影响的时间。众多火灾案例表明,火灾烟气毒性、缺氧使人窒息以及辐射热是致人伤亡的主要因素。其中烟气毒性是火灾中影响人员安全疏散和造成人员死亡的最主要因素,也就是造成火灾危险的主要因素。研究表明:人员在CO浓度为4X10-3浓度下暴露30分钟会致死。此外,缺氧窒息和辐射热也是致人死亡的主要因素,研究表明:空气中氧气的正常值为21%,当氧气含量降低到12%~15%时,便会造成呼吸急促、头痛、眩晕和困乏,当氧气含量低到6%~8%时,便会使人虚脱甚至死亡;人体在短时间可承受的最大辐射热为/m2(烟气层温度约为200℃)。 图1 疏散影响因素 预测烟气对安全疏散的影响成为安全疏散评估的一部分,该部分应考虑烟气控制设备的性能以及墙和开口部对烟的影响等;通过危险来临时间和疏散所需时间的对比来评估疏散设计方案的合理性和疏散的安全性。疏散所需时间小于危险来临时间,则疏散是安全的,疏散设计方案可行;反之,疏散是不安全的,疏散设计应加以修改,并再评估。 图2 人员疏散与烟层下降关系(两层区域模型)示意图 疏散所需时间包括了疏散开始时间和疏散行动时间。疏散开始时间即从起火到开始疏散的时间,它大体可分为感知时间(从起火至人感知火的时间)和疏散准备时间(从感知火至开始疏散时间)两阶段。一般地,疏散开始时间与火灾探测系统、报警系统,起火场所、人员相对位置,疏散人员状态及状况、建筑物形状及管理状况,疏散诱导手段等因素有关。 疏散行动时间即从疏散开始至疏散结束的时间,它由步行时间(从最远疏散点至安全出口步行所需的时间)和出口通过排队时间(计算区域人员全部从出口通过所需的时间)构成。与疏散行动时间预测相关的参数及其关系见图3。 图3 与疏散行动时间预测相关的参数及其关系模型的分析与建立 我们将人群在1号教学楼内的走动模拟成水在管道内的流动,对人员的个体特性没有考虑,而是将人群的疏散作为一个整体运动处理,并对人员疏散过程作了如下保守假设: u 疏散人员具有相同的特征,且均具有足够的身体条件疏散到安全地点;u 疏散人员是清醒状态,在疏散开始的时刻同时井然有序地进行疏散,且在疏散过程中不会出现中途返回选择其它疏散路径;u 在疏散过程中,人流的流量与疏散通道的宽度成正比分配,即从某一个出口疏散的人数按其宽度占出口的总宽度的比例进行分配u 人员从每个可用出口疏散且所有人的疏散速度一致并保持不变。 以上假设是人员疏散的一种理想状态,与人员疏散的实际过程可能存在一定的差别,为了弥补疏散过程中的一些不确定性因素的影响,在采用该模型进行人员疏散的计算时,通常保守地考虑一个安全系数,一般取1.5~2,即实际疏散时间为计算疏散时间乘以安全系数后的数值。 1号教学楼平面图 教学楼模型的简化与计算假设 我校1号教学楼为一幢分为A、B两座,中间连接着C座的建筑(如上图),A、B两座为五层,C座为两层。A、B座每层有若干教室,除A座四楼和B座五楼,其它每层都有两个大教室。C座一层即为大厅,C座二层为几个办公室,人员极少故忽略不考虑,只作为一条人员通道。为了重点分析人员疏散情况,现将A、B座每层楼的10个小教室(40人)、一个中教室(100)和一个大教室(240人)简化为6个教室。 图4 原教室平面简图在走廊通道的1/2处,将1、2、3、4、5号教室简化为13、14号教室,将6、7、8、9、10号教室简化为15、16号教室。此时,13、14、15、16号教室所容纳的人数均为100人,教室的出口为距走廊通道两边的1/4处,且11、13、15号教室的出口距左楼梯的距离相等,12、14、16号教室的出口距右楼梯的距离相等。我们设大教室靠近大教室出口的100人走左楼梯,其余的140人从大教室楼外的楼梯疏散,这样让每一个通道的出口都得到了利用。由于1号教学楼的A、B两座楼的对称性,所以此简图的建立同时适用于1号教学楼A、B两座楼的任意楼层。 图5 简化后教室平面简图 经测量,走廊的总长度为44米,走廊宽为米,单级楼梯的宽度为米,每级楼梯共有26级,楼梯口宽米,每间教室的面积为125平方米. 则简化后走廊的1/4处即为教室的出口,距楼梯的距离应为44/4=11米。对火灾场景做出如下假设:u 火灾发生在第二层的15号教室;u 发生火灾是每个教室都为满人,这样这层楼共有600人;u 教学楼内安装有集中火灾报警系统,但没有应急广播系统;u 从起火时刻起,在10分钟内还没有撤离起火楼层为逃生失败; 对于这种场景下的火灾发展与烟气蔓延过程可用一些模拟程序进行计算,并据此确定楼内危险状况到来的时间.但是为了突出重点,这里不详细讨论计算细节.人员的整个疏散时间可分为疏散前的滞后时间,疏散中通过某距离的时间及在某些重要出口的等待时间三部分,根据建筑物的结构特点,可将人们的疏散通道分成若干个小段。在某些小段的出口处,人群通过时可能需要一定的排队时间。于是第i 个人的疏散时间ti 可表示为:式中, ti,delay为疏散前的滞后时间,包括觉察火灾和确认火灾所用的时间; di,n为第n 段的长度; vi,n 为该人在第n 段的平均行走速度;Δtm,queue 为第n 段出口处的排队等候时间。最后一个离开教学楼的人员所有用的时间就是教学楼人员疏散所需的疏散时间。假设二层的15号教室是起火房间,其中的人员直接获得火灾迹象进而马上疏散,设其反应的滞后时间为60s;教学内的人员大部分是学生,火灾信息将传播的很快,因而同楼层的其他教室的人员会得到15号教室人员的警告,开始决定疏散行动.设这种信息传播的时间为120s,即这批人的总的滞后时间为120+60=180秒;因为左右两侧为对称状态,所以在这里我们就计算一面的.一、三、四、五层的人员将通过火灾报警系统的警告而开始进行疏散,他们得到火灾信息的时间又比二层内的其他教室的人员晚了60秒.因此其总反应延迟为240秒.由于火灾发生在二楼,其对一层人员构成的危险相对较小,故下面重点讨论二,三,四,五楼的人员疏散.为了实际了解教学楼内人员行走的状况,本组专门进行了几次现场观察,具体记录了学生通过一些典型路段的时间。参考一些其它资料[1、2、3] ,提出人员疏散的主要参数可用图6 表示。在开始疏散时算起,某人在教室内的逗留时间视为其排队时间。人的行走速度应根据不同的人流密度选取。当人流密度大于1 人/ m2时,采用0. 6m/ s 的疏散速度,通过走廊所需时间为60s ,通过大厅所需时间为12s ;当人流密度小于1 人/m2 时,疏散速度取为1. 2m/ s ,通过走廊所需时间为30s ,通过大厅所需时间为6s。 图6 人员疏散的若干主要参数 Pauls[4]提出,下楼梯的人员流量f 与楼梯的有效宽度w 和使用楼梯的人数p 有关,其计算公式为: 式中,流量f 的单位为人/ s , w 的单位为mm。此公式的应用范围为0. 1 < p/ w < 0. 55 。 这样便可以通过流量和室内人数来计算出疏散所用时间。出口的有效宽度是从通道的实际宽度里减去其两侧边界层而得到的净宽度,通常通道一侧的边界层被设定为150mm。 3 结果与讨论 在整个疏散过程中会出现如下几种情况: (1) 起火教室的人员刚开始进行疏散时,人流密度比较小,疏散空间相对于正在进行疏散的人群来说是比较宽敞的,此时决定疏散的关键因素是疏散路径的长度。现将这种类型的疏散过程定义为是距离控制疏散过程; (2) 起火楼层中其它教室的人员可较快获得火灾信息,并决定进行疏散,他们的整个疏散过程可能会分成两个阶段来进行计算: 当f进入2层楼梯口流出2层楼梯口时, 这时的疏散就属于距离控制疏散过程;当f进入2层楼梯口> f流出2层楼梯口时, 二楼楼梯间的宽度便成为疏散过程中控制因素。现将这种过程定义为瓶颈控制疏散过程; (3) 三、四层人员开始疏散以后,可能会使三楼楼梯间和二楼楼梯间成为瓶颈控制疏散过程; (4) 一楼教室人员开始疏散时,可能引起一楼大厅出口的瓶颈控制疏散过程; (5) 在疏散后期,等待疏散的人员相对于疏散通道来说,将会满足距离控制疏散过程的条件,即又会出现距离控制疏散过程。 起火教室内的人员密度为100/ 125 = 人/m2 。然而教室里还有很多的桌椅,因此人员行动不是十分方便,参考表1 给出的数据,将室内人员的行走速度为 s。设教室的门宽为1. 80m。而在疏散过程中,这个宽度不可能完全利用,它的等效宽度,等于此宽度上减去0. 30m。则从教室中出来的人员流量f0为: f0=v0×s0×w0=××(人/ s) (3)式中, v0 和s0 分别为人员在教室中行走速度和人员密度, w0 为教室出口的有效宽度。按此速度计算,起火教室里的人员要在 内才能完全疏散完毕。 设人员按照 人/ s 的流量进入走廊。由于走廊里的人流密度不到1 人/ m2 ,因此采用1. 2m/s的速度进行计算。可得人员到达二楼楼梯口的时间为。在此阶段, 将要使用二楼楼梯的人数为100人。此时p/ w=100/1700= < 0. 1 , 因而不能使用公式2 来计算楼梯的流量。采用Fruin[5]提出的人均占用楼梯面积来计算通过楼梯的流量。根据进入楼梯间的人数,取楼梯中单位宽度的人流量为人 /(m. s) ,人的平均速度为0. 6m/ s ,则下一层楼的楼梯的时间为13s。这样从着火时刻算起,在第(60+)时,着火的15号教室人员疏散成功。以上这些数据都是在距离控制疏散过程范围之内得出的。 起火后120s ,起火楼层其它两个教室(即11和13号教室)里的人员开始疏散。在进入该层楼梯间之前,疏散的主要参数和起火教室中的人员的情况基本一致。在他们中有人到达二层楼梯口,起火教室里的人员已经全部撤离二楼大厅。因此,即将使用二楼楼梯间的人数p1 为: p1 = 100 ×2 = 200 (人) (4)此时f进入2层楼梯口>f流出2层楼梯口,从该时刻起,疏散过程由距离控制疏散过渡到由二楼楼梯间瓶颈控制疏散阶段。由于p/ w =200/1700= ,可以使用公式2 计算二楼楼梯口的疏散流量f1 , 即:?/P> f1 = (3400/ 8040) × 200 = 人/ s) (5) 式中的3400 为两个楼梯口的总有效宽度,单位是mm。而三、四层的人员在起火后180s 时才开始疏散。三层人员在(180+)时到达二层楼梯口,与此同时四层人员到达三层楼梯口,第五层到达第四层楼梯口。此时刻二层楼梯前尚等待疏散人员数p′1: p′1 = 200 - ( – ) × = (人) <0 (6) 所以,二层楼的人员已经全部到达一层此后,需要使用二层楼梯间的人数p2 : p2 = 100×3=300 (人) (7)相应此阶段通过二楼楼梯间的流量f 2 : f2 = (3400/8040) × 200 = (人/ s) (8) 这┤送ü楼楼梯的疏散时间t1 : t1 = 300÷ = 120 ( s) (9) 因为教学楼三、四、五层的结构相同,所以五层到四层,四层到三层和三层到二层所用的时间相等,因此人员的疏散在楼梯口不会出现瓶颈现象所以,通过二楼楼梯的总体疏散时间T : T = 120×3 = ( s) (10) 最终根据安全系数得出实际疏散时间为T实际: T实际 =×(~2)=~1293( s) (11)图7 二楼楼梯口流量随时间的变化曲线图 关于几点补充说明:以上是我们只对B座二楼的15号教室起火进行的假设分析和计算,此时当人员到达一楼即视为疏散成功。同理,当三楼起火的时候,人员到达二楼即视为疏散成功,四楼、五楼以此类推。因为1号教学楼A、B座结构的对称性所以楼层的其他教室起火与此是同一个道理。所以本文上述的分析与计算同时适用于A、B两座楼。另外当三层以上(包括三楼)起火的时候,便体现出C座二楼的作用。当B座的三楼起火的时候,B座二楼的人员肯定是在B座三楼人员后对起火做出应对反应,所以会出现当三楼人员疏散到二楼的时候,二楼的人员也开始疏散的情况,势必造成二楼楼梯口出现瓶颈现象。因为A、B座的三、四、五楼并没有连接,都是独立的结构,出现火灾不会直接从B座的三楼威胁到A座三楼及其他楼层人员的安全,所以为了避免上述二楼楼梯口出现瓶颈现象的发生,我们让二楼的所有人员向A座的二楼转移,这样就会让起火楼层的人员能够更快的疏散到安全区域。当B座的四、五楼起火的时候也同样让二楼的人员向A座的二楼转移,为二楼以上的人员疏散创造条件。同理,A座也是如此。 在对火灾假设分析和计算的时候,我们并没有对大教室的后门楼梯的疏散做出计算,由于1号教学楼的特殊性,A座的四楼和B座的五楼没有大教室,所以大教室的后门楼梯疏散人员的速度是很快的,不会在大教室后门的楼梯出现瓶颈现象。 关于1号教学楼的几个出口:u 大厅有一个大门u A座一楼靠近正厅有一个门u A座大教室旁边有一个门u B座中教室靠近大厅正门侧面的窗户可以作为一个应急出口u A、B座的底层都有一个地下室(当烟气蔓延太快来不及疏散,受烟气威胁的时候可以作为一个逃生去向)u A、B座大教室各有一个后门 合计: 8个出口致校领导的一封信尊敬的校领导,你们好。针对我校1号教学楼,我们数学建模小组通过实际测量、建立模型、模型分析,得出如下结论:一旦1号教学楼发生火灾,人员有可能不能全部安全疏散。以上的分析是按一种很理想的条件进行的,并没有进行任何修正。实际上人在火灾中的行为是很复杂的,尤其是没有经过火灾安全训练的人,可能会出现盲目乱跑、逆向行走等现象,而这也会延长总的疏散时间。 该模型在现阶段是一个人员疏散分析模型的基础,目前属于理论上的模型,以上的计算结果都是通过手算或文曲星计算得到的。模型中的人员行走速度是通过多次观察该教学楼内下课时人员的行走速度和参照Fru2in 给出的疏散时人员行走速度、NFPA 中给出的人员行走速度以及目前人员疏散模型中通用的计算速度等修正而得到的,具有较为广泛的通用性。而预测的疏散时间是根据建筑物的结构特点和人员行走速度而得到的,在计算疏散所用时间的时候在剔除疏散前人员的滞后时间(或称预移动时间) 外,所得到的时间是合理的。对于疏散前人员的滞后时间,参考T. J . Shields 等试验结论:75 %人员在听到火灾警报后的15~40 s 才开始移动,而整个疏散所用的时间为 s。在该例中起火教室的反应滞后时间为60 s ,这是从开始着火时刻算起的。预移动时间与不同类型的建筑物、建筑物中人员的自身特点和建筑物中的报警系统有着很大的关系,它是一个很不确定的数值。本文中所用的预移动时间不到整个疏散过程中所用的时间的 10 %。二楼楼梯口流量随时间的变化曲线如图7所示。由上可知,二层以上的所有人通过二楼楼梯所需的时间为 s ,这比前面设定的可用安全疏散时间要长,因而不能保证有关人员全部安全疏散出去。楼梯的宽度和大厅的正门显然是制约人员疏散的一个瓶颈。造成这种情况的基本原因是该教学楼的疏散通道安排不当,楼梯通道的宽度不够,对此可以适当增大楼梯的总宽度;或者在教学楼的每个分支上再修一个楼梯,则人员的疏散会更加的畅通;最好是分别在A座和B座新建一个象正门一样的出口,这样将大大的缓解了大厅正门疏散人员的压力,不至于造成大厅人员堵塞而影响楼上人员的疏散。另一方面,学校还应多增加一些消防设施,每个教室都该配备灭火器;学校还应加强学生消防意识的培养和教育,形式可以多样化、新颖化,比如做报告,上实践课,做消防演习等等。让他们了解一些消防逃生的常识,学会一些消防器材的使用,并让他们对自己所使用的教学楼有充分发认识和了解,一旦发生火灾好知道采取何种疏散方法才能在最短的时间内到达安全区域。如果学校经费有限,也可以不花一分钱就可以消除这个消防隐患,就是合理安排上课的教室,避免每个楼层的所有教室都被用于上课。每层至少可以空出几个,这样就会大大的缓解人员疏散不利带来的危险。但是这样也有弊端,就是没有充分利用教室的使用价值,浪费资源。

初二学生数学课题: 1 图形的变换 2 建筑学中的对称图案赏析 3 二次项展开式 4 面积法证明代数恒等式 5 无理数发现的历史 6 笛卡儿坐标系问题,函数的历史 7 使用函数作图软件画函数图象 8 古代人怎样利用相似形理论 9 分形图形 10 勾股定理的资料 11 三角函数历史

建议到数学中国下载,那里是中国最大的数学建模论坛,百度数学中国,第一个就是了!各种论文都有打包的,积分用到不多就能下载了!

在百度文库里查,有很多都是免费的。要不就上图书馆借书了》》》》》》

历年数学建模论文模板

数学建模论文格式模板以及要求

导语:伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,成为人们生活中非常重要的一门学科。下面是我分享的数学建模论文格式模板及要求,欢迎阅读!

(一)论文形式:科学论文

科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。

注意:它不是感想,也不是调查报告。

(二)论文选题:新颖,有意义,力所能及。

要求:

有背景.

应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。

有价值

有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。

有基础

对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。

有特色

思路创新,有别于传统研究的新思路;

方法创新,针对具体问题的特点,对传统方法的改进和创新;

结果创新,要有新的,更深层次的结果。

问题可行

适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。

(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确

要求:

数据真实可靠,不是编的数学题目;

数据分析合理,采用分析方法得当。

(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。

要求:

抽象化简适中,太强,太弱都不好;

抽象出的数学问题,参数选择源于实际,变量意义明确;

数学推理严格,计算准确无误,得出结论;

将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;

问题和方法的进一步推广和展望。

(五)(数学理论问题)问题的研究现状和研究意义:了解透彻

要求:

对问题了解足够清楚,其中指导教师的作用不容忽视;

问题解答推理严禁,计算无误;

突出研究的特色和价值。

(六)论文格式:符合规范,内容齐全,排版美观

1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。

要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。

2. 摘要:全文主要内容的简短陈述。

要求:

1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;

2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字;

3)不要举例,不要讲过程,不用图表,不做自我评价。

3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。

要求:数量不要多,以3-5各为宜,不要过于生僻。

(七). 正文

1)前言:

问题的背景:问题的来源;

提出问题:需要研究的内容及其意义;

文献综述:国内外有关研究现状的回顾和存在的问题;

概括介绍论文的内容,问题的结论和所使用的方法。

2)主体:

(数学应用问题)数学模型的组建、分析、检验和应用等。

(数学理论问题)推理论证,得出结论等。

3)讨论:

解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。

要求:

1)背景介绍清楚,问题提出自然;

2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;

3)突出所研究问题的难点和意义。

5. 参考文献:

是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。

要求:

1)文献目录必须规范标注;

2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。

(七)数学建模论文模板

1. 论文标题

摘要

摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。

一般说来,摘要应包含以下五个方面的内容:

①研究的主要问题;

②建立的什么模型;

③用的什么求解方法;

④主要结果(简单、主要的);

⑤自我评价和推广。

摘要中不要有关键字和数学表达式。

数学建模竞赛章程规定,对竞赛论文的评价应以:

①假设的合理性

②建模的创造性

③结果的正确性

④文字表述的清晰性 为主要标准。

所以论文中应努力反映出这些特点。

注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

一、 问题的重述

数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。

此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。

这部分的内容是将原问题进行整理,将已知和问题明确化即可。

注意:在写这部分的内容时,绝对不可照抄原题!

应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。

二、 模型假设

作假设时需要注意的问题:

①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!

②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!

③与题目无关的假设,就不必在此写出了。

三、 变量说明

为了使读者能更充分的理解你所做的工作,

对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意:

①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。

②要与数学中的习惯相符,不要使用程序中变量的写法

比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量

再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)

四、模型的建立与求解

这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:

①一定要有分析,而且分析应在所建立模型的前面;

②一定要有明确的模型,不要让别人在你的文章 中去找你的模型;

③关系式一定要明确;思路要清晰,易读易懂。

④建模与求解一定要截然分开;

⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的.写出其步骤;

⑥结果必须放在这一部分的结果中,不能放在附录里。

⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!

⑧程序不能代替求解过程和结果!

⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!

⑩每个问题和问题之间以及5个小点之间都必须空一行。

问题一:

1.建模思路:

①对问题的详尽分析;

②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味

③完成内容阐述所必需的公式推导、图表等

2.模型建立:

建立模型并对模型作出必要的解释

对于你所建立的模型,最好能对其中的每个式子都给出文字解释。

3.求解方法:

给出你的求解思路,最好能想写算法一样,写出你的算法。

4.求解结果:

你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。

结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。

5.模型的分析与检验

在计算出相应的结果之后,你必须对你的结果做出相应的解释。 因为你的结果往往是数学的结果,一般人无法理解。 你必须归纳出你的结论和建议。 这里主要应包括:

①这个结果说明了什么问题?

②是否达到了建模目的?

③模型的适用范围怎样?

④模型的稳定性与可靠性如何?

问题二:

问题三:

问题四:

问题五:

五、模型的评价与推广

这一部分应包括:

①你的模型完成了什么工作?达到了什么目的?得出了什么规律?

②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途?

③模型中有何不足之处?有何改进建议?

④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。

这一部分一定要有!

六、参考文献

引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中

书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

七、附录

不便于编入正文的资料都收集在这里。 应包括:

①某一问题的详细证明或求解过程; ②流程图;

③计算机源程序及结果;

④较繁杂的图表或计算结果(一般结果只要不超过A4一页,尽量都放在正文中)。

免责声明:本站文章信息来源于网络转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。不保证信息的合理性、准确性和完整性,且不对因信息的不合理、不准确或遗漏导致的任何损失或损害承担责任。本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任,并保证最终解释权。

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

全国大学生数学建模竞赛论文格式规范 本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。 论文用白色A4纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。 论文第一页为承诺书,具体内容和格式见本规范第二页。 论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。 论文题目和摘要写在论文第三页上,从第四页开始是论文正文。 论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。 引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。 在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。 本规范的解释权属于全国大学生数学建模竞赛组委会。[注]赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。全国大学生数学建模竞赛组委会2009年3月16日修订数学建模论文一般结构1摘要 (单独成页)主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3。2、问题重述和分析3、问题假设假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。作假设的两个原则:① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。② 贴近原则:贴近实际。以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。4、符号说明 (可以合并)5、模型建立与求解(重要程度 :60%以上)6、模型检验(误差一般指均方误差)7、结果分析 (可以合并)8、模型的进一步讨论 或 模型的推广9、模型优缺点10、参考文件11、附件(结果千万不能放在附件中)论文最佳页面数:15-21页 论文结构一题目摘要1.问题的重述2.合理假设3.符号约定4.问题的分析5.模型的建立与求解6.模型的评价与推广1、误差分析2、模型的改进与推广对XXXX切实可行的建议和意见:1.……2.…………7.参考文献8.附录 数学建模论文一般格式 摘要(主要理解、主要方法、主要结果、主要特点)或(背景、目标、方法、结果、结论、建议) 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模型优缺点优秀论文要点:1. 语言精练、有逻辑性、书写有条理2. 文字与图形相结合,使内容直观、清晰、明了、容易理解3. 切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章4. 对论文中所引用或用到的知识、软件要清晰地予以说明。5. 在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去各步骤解释摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3问题重述与分析: 一向导、对题意的理解、 建模的创造性创造性是灵魂,文章要有闪光点。好创意、好想法应当既在人意料之外,又在人意料之中。新颖性(独特性)与合理性皆备。误区之一:数学用得越高深,越有创造性。解决问题是第一原则,最合适的方法是最好的方法。误区之二:创造性主要体现在建模与求解上。创造性可以体现在建模的各个环节上,并且可以有多种表现形式。误区之三:好创意来自于灵感,可遇不可求。好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。 表达的清晰性好的文章 = 好的内容 + 好的表达 替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。 写好摘要,包括:建模主要方法、主要结果,模型主要优点。 专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。 适当采用图表,增加可读性。

研究生数学建模2021年论文

数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。

摘要:随着全球经济的发展,计算机的迅速发展,利用计算机去解决数学问题再用数学去解决实际问题显得尤为重要,而数学建模就是利用计算机与数学解决实际问题。本文从四个方面论述了现代数学应用中数学建模的重要性,详细阐述了数学建模在生活中的应用和怎样在学校教育中开展数学建模的教学这两个问题。通过对四个方面即概念、重要性、应用、养数学建模的能力的深刻论述得出结论,数学建模是架于数学理论和生活实际之间的一个桥梁,让人们看到了数学建模的价值,体会到数学建模的教学在现代教育中的重要地位和作用。关键词:数学建模;综合素质;教学;数学应用(一)数学建模的概念数学建模非常广泛、简单,它一直与生活、学习息息相关。例如,在学习中学数学的课程时,根据应用题的已知量列出的数学等式就是最简单的数学模型,对方程进行求解的过程就是在进行简单的数学建模。数学建模就是应用数学模型来解决各种实际问题的方法。也就是通过对实际问题的抽象、简化、确定变量和参数、并应用某些“规律”建立变量,参数间的确定性的数学问题(也可称为一个数学模型)求解数学问题,解释验证所得到的解,从而确定能否应用于解决实际问题的多次循环,不断深化结果。它是用数学方法解决各种实际问题的桥梁。(二)数学建模的思想内涵

听数学建模课的感想今年,我选修了数学建模这门课,因为我感觉数学建模是非常有用的一门课,而且我对数学建模也非常感兴趣。在学习的过程中,我获得了很多知识,对我有非常大的提高。同时我有了一些感想和体会。数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。在学习中,我知道了数学建模的过程,其过程如下:(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。(2) 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。(3) 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)(4) 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。(5) 模型分析:对所得的结果进行数学上的分析。(6) 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。(7) 模型应用:应用方式因问题的性质和建模的目的而异。我还了解到学习数学建模的意义是:1、培养创新意识和创造能力2、训练快速获取信息和资料的能力3、锻炼快速了解和掌握新知识的技能4、培养团队合作意识和团队合作精神5、增强写作技能和排版技术6、荣获国家级奖励有利于保送研究生7、荣获国际级奖励有利于申请出国留学在学习了数学建模后,我有了很多体会,我认为数学建模带给我的是现在的指示,发散性思维,各种研究方法和手段。特别是对我们未来人生的奠基作用,毫不夸张地说,我们将在以后的人生享受它的思慧!通过数学建模,我学会了“我们”,培养了“三人同心,其利断金”的团队精神,数学建模教会了我顽强和忍耐,教会我做事谨慎,言如其实,教会我凡事要有自己的创新,不能局限于俗套,它还教会我踏踏实实做人,认认真真做事。是数学建模让我提高了自己,在今后,我会用数学建模的思想去思考问题。我相信,我会进步更多的!我永远不会忘了我的数学建模课!这是我写的,你看能不能用

二、论文格式规范

(一)   “论文首页”编写

竞赛论文首页为“编号页”,只包含队号、队员姓名、学校名信息,第二页起为摘要页和正文页。参赛队有关信息不得出现于首页以外的任何一页,包括摘要页,否则视为违规。

(二)   “论文摘要页”编写

竞赛使用“统一摘要面”。为了保证评审质量,提请参赛研究生注意摘要一定要将论文创新点、主要想法、做法、结果、分析结论表达清楚,如果一页纸不够,摘要可以写成两页。

(三)   “论文文本”要求————“全国研究生数学建模竞赛论文格式规范”

l  每个参赛队可以从A、B、C、D、E题中任选一题完成论文。(赛题类型以比赛下载为准)

l  论文用白色A4版面;上下左右各留出至少厘米的页边距;从左侧装订。

l  论文题目和摘要写在论文封面上,封面页的下一页开始论文正文。

l  论文从编号页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1 ”开始连续编号。

l  论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。

l  论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其他汉字一律采用小四号宋体字,行距用单倍行距。程序执行文件,和源程序一起附在电子版论文中以备检查。

l  请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),请认真书写(注意篇幅一般不超过两页,且无需译成英文)。全国评阅时对摘要和论文都会审阅。

l  引用别人的成果或其他公开的资料(包括网上甚至在“博客”上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

全国研究生数学建模竞赛评审委员会

往年数学建模论文题目

018年全国研究生数学建模竞赛题目

2018年全国研究生数学建模竞赛题目:链接:

A题:跳台跳水体型校正系数的建模分析

论文1  论文2  论文3  论文4  论文5  论文6

B题: 光传送网建模与价值评估

论文1  论文2  论文3   论文4  论文5  论文6  论文7

C题: 对恐怖袭击事件记录数据的量化分析

论文1  论文2  论文3  论文4  论文5  论文6  论文7

D题: 基于卫星高度计海面高度异常资料获取潮汐调和常数方法及应用

论文1  论文2  论文3  论文4   论文5   论文6  论文7  论文8

E题: 多无人机对组网雷达的协同干扰

论文1  论文2  论文3  论文4  论文5

F题: 增设卫星厅的登机口分配问题

论文1  论文2  论文3  论文4  论文5  论文6

取数学建模论文题目取法如下:

首先看论文首页的三要素:

1.标题:基于xx模型的xx问题研究

2.摘要:针对每一个问题分别阐述问题、方法、结果

3.关键词

其次看论文题目基本要求:

简短精练、高度概括、准确得体、恰如其分;既要准确表达论文内容,恰当反映所研究的范围和深度;又要尽可能概括、精练,力求题目的字数较少。

最后论文题目的字数一般不要超过20个字;当希望题目字数少与恰当反映论文内容发生冲突,可多用几个字表达准确。

基于旅行商规划模型(方法)的碎纸片拼接复原问题(问题)研究

基于利润最大化的奥运商业网点分布微观经济模型

基于力学分析的系泊系统设计

奥运场馆中临时商业网点设计中的数学模型化方法

CT 系统参数标定及反投影重建成像

拓展

参加数学建模比赛的意义

有利于培关学生综合解决问题的能力因为数学建模最后提交的成果是交一篇完整5论文,于大多数学生决说,款是第一次,已可么想高学生如何的数学知识用到实呀生活中的能力,提高学生合理利用网络道淘资料物能力,超是高学生的新意识和团队协作能力等,很名参委学生事后感收到团以合作能力对于建模比赛很重要,这对街后参加工作也会有很好的帮助。

2有利干促迸高职数学课程的改革

大多数学校的高职数学课还是采用软师在上面讲,学生在下面听的方法,殊不和对于高职生历言,他们不但听不懂,而目也不愿意听,这就促进教师要改进教学方法,最好的方法是在机房里上课,吉师把重要的理论思想教给学生之后,具体的计算方法可以让学生利用软件在电脑上操作,这样既提高了学生的学习兴趣,也提高了学生运用软件的能力。

  • 索引序列
  • 研究生数学建模历年题目和论文
  • 优秀历年数学建模论文题目
  • 历年数学建模论文模板
  • 研究生数学建模2021年论文
  • 往年数学建模论文题目
  • 返回顶部