怎样才能写好数学的小论文呢?下面是我收集整理的六年级数学论文500字以供大家学习。
六年级数学论文500字(一)
小学数学总复习不同于单元复习、学期复习,对学生来说,知识容量多、跨度大、时间长,所学的知识遗忘率高;对教师来说则感到时间紧、内容多,知识的综合性强,难以在短时间内取得明显的复习效果。下面我就多年六年级数学教学所得谈自己的几点看法:
一、系统分析
在六年级的数学复习阶段开始前,老师要首先明确数学教学的目的、教学任务、知识范围、顺序与结构,教学重点与难点,这些一定要让学生掌握。其次,要全面了解全班情况,知道每一位学生现在学到了什么程度,还需要加强哪些方面的知识;要针对学生的特点,明确应该用什么方法去引导学生,激发学生的学习兴趣,把学生的求知欲望调动起来,使学生养成一个良好的学习习惯,真正成为学习的主人。最后根据学生的实际情况和特点结合六年级知识特征制订出切实可行的复习计划。
二、抓好基础
在六年级的数学复习中,首先要抓好五个方面的基础知识运用:一是概念。要让学生真正理解每部分的知识点,把容易混淆的内容一一区别开来。比如:让学生判断等底等高的两个三角形的面积相等,能不能拼成一个平行四边形?不相交的两条直线叫做平行线吗?等等。二是开拓视野。在数学复习中,老师要注重开拓学生的视野,不断反馈教学。比如:a的3/5与b的1/4相等,比较a、b大小(a、b都不为零)。解答完这个题,再给学生出一道题:甲班的4/5同乙班的3/4的人数相等,那么,甲班同乙班人数谁多谁少?稍微这么一改,有的学生就无从下手了。教师应提示学生a、b可以是人也可以是物,那么甲班和乙班是班级的名称,它同a、b有何联系?这时候有的学生就明白了。三是公式推导。比如圆的面积、圆柱的体积、等计算公式的是怎么推导出来的,让学生进行回顾,亲自实践、亲自品尝。四是知识对比。整数、小数、分数的四则运算的意义,尤其是小数、分数的乘法意义,学生们容易混淆。要从整数乘法入手,看学生是不是写成几个数相加的形式,让学生动手动脑去探索,真正理解他们的意义。五是计算能力。很多学生到了六年级,连基本加减乘除计算都算错,更谈不上应用题了。老师普遍认为是学生太粗心、不认真。追根溯源,原因还是在老师。我们要培养学生养成一种良好的学习习惯。比如:首先要让学生观察式子,进行分析,看是否能用简便方法,其次结合四则混合运算进行计算。学会了做题方法,还要让学生反复练习,检查结果。在此基础上,教师不断地反馈教学,让学生把知识掌握了,应用更灵活,计算准确率就高了。
三、能力的培养
一要注意培养学生合理、灵活地应用简便方法进行计算的能力。在复习量的计量和几何初步知识时,注意培养学生的空间观念,巩固画图和测量的技能。二要培养一题多变的能力。重点是要抓住母题,使学生知道题目源于母题,万变不离其宗。通过改变条件、问题和情境,启发学生从不同的角度思考问题,寻找解决问题的途径,还必须注意对学生进行解题思维灵活性的培养,启发学生多思考,从而达到善于思考,逐步提高学生的应变及解题能力。三是是培养操作实践的能力。如:八宝粥公司请包装公司设计一个能装12罐八宝粥的盒子。[八宝粥罐子为圆柱形,底面直径6厘米,高13厘米]你准备怎样设计?(提示:包装盒一般可设计成长方体,要求需要多少硬纸板是求长方体的表面积,所以我们应该想办法知道长方体的长、宽、高,即先确定八宝粥罐子怎么摆)这时不急于让学生做,让学生找易拉罐摆放。通过亲身实践可以获得直接感受把题解出来。但有的同学做得不切合实际,确定的长、宽、高不适中。所以教师必须把学生做的几种方法都一一列出来让学生比较。通过比较学生们选用最省料的方法。
四、学困生转化工作
作为教师要善于分析学困生形成的原因,到底困在哪里?用什么手段解决?我认为除了要根据学生的实际情况备课外,还要根据记忆和遗忘的规律,重视信息反馈原理的运用,及时巩固当堂效果;要遵照循序渐进的原则,坚持科学训练,进行查漏补缺,提高学生的知识素质,在这方面应做到:细水长流逐一补,以新带旧分散补,突出对象个别补。在班里成立几个小组,每小组选择一个学习好的负责,成绩好的学生教成绩差的学生,这样成绩差的学生进步了,成绩好的成绩更好了,整个班掀起你追我赶的学习气氛,学生由被动的学习转变为主动的学习。
六年级数学论文500字(二)
我们生活中处处充满了数学知识,这些知识不但有趣而且在我们的生活中占有重要的地位。如果离开了这些看似简单的数字那我们的生活就无法像往常一样正常生活。可见数学在我们的生活中占有多么重要的地位。
举个例子,如:银行存款分:整存整取、零存整取、定期存款、活期、国债……这些存款形式各种各样,利率也有大有小,平时我们是这样计算利率的:本金×利率×时间=所得利息,然后还要从利息里扣除20%来上税(除国债外)之后剩下的80%的利息就是你自己应得的利息了。大家想一想如果没有这些百分数帮忙,恐怕银行就要宣布破产了。
再说科学家们发明的种种东西,气象学家测量的天气情况……这些多要经过各项认真的思考和精密的计算才能获得正确的答案。哪怕不小心写错一个小数点也就前工尽弃了。还有常在天空翱翔的宇航员们他们要操作上百个由数字组成的仪表,如果稍有不慎那么结果就是机毁人亡。可见数学在我们生活中是不可缺少,不可马虎的,否则会造成严重的后果 。
数学不光只有这些价值,我们生活中处处可以见到并用到它。如:农民用几何图形,为了使农场更美观更好管理;工程师使用比例尺,为了让人们更好的了解这件东西;商农使用的四则计算,是为了更简单、准确的计算出该商品价值;制作各类统计表,是为了更好的统计资料,使人一看一目了然;使用百分数,是为了更好的计算出商品打折后的价钱及××率;这些计算表面积而使用进一法,是为了使用最少的材料做出合格的商品;计算容积或体积而使用去尾法,是为了确保无误的让物品存放而不溢出;同一类单位换算,是为了方便我们的计算;使用代数代表运算定律和计算公式,是为了更方便地为研究和解决问题;再说一说球吧,把它切开使切开面积最大,那就要从球心o沿着直径切下,才能使切开面积最大,再细细想想我们有时切西瓜不就是这个道理吗?再看看各种数学知识还不都用在了生活中去了吗?
其实,只要我们用心去发现,用心去思考,那么你一定能学好数学的,因为数学就在我们身边。
六年级数学论文500字(三)
数学知识就像大海一样浩瀚,需要人们不断地创新,不断地探索。数学知识是必需掌握的,但是良好的学习习惯是必不可少的。好习惯影响我们的学习,习惯是必要的,也许你会知道影响我们一生的好习惯。
一、 认真审题的习惯
读题时候的认真是很重要的,审题不清或没有弄清题意往往会导致错误的结果,或者浪费时间,特别是在考试中,浪费了时间很可能做不完题目,导致丢分。记得上次考试时,有一道题是这样的:小丽和爸爸、妈妈去长城,单程票价成人每人元,儿童半价。问题是:往返交通费要用多少元?可以就是这样简单的一道题,我们班有很多学生都失分了,他们是这样解答的:×2+÷2,只看条件这道题并没有问题,但是就是因为他们在读题的时候不认真,没有看清问题,而造成这样的失误。卷子发下来时,他们看到错号,不用老师再讲解,就会解答了。这就是他们在读题的时候不认真,没有注意问题里面的"往返"两个字,因而也现了大部分的丢分。
二、提高解题效率
这一点是很多学生的通病,我们班就有很多这样的例子。比如,你做着做着,突然觉得很厌倦,于是这里看看,那里看看,也许看到一个题目,很长很长,顿时就不想做了,于是今天又要"奋战"到很晚了。久而久之就成了习惯,那就很难摆脱了。我们班有这样一个同学,他平时是个很聪明的学生,回答问题总是说得很有道理。是我们大家公认的"聪明小子",可是他有一个很大的缺点,就是做题效率太低,就是像上面所说的做着做着就不想做了,经常被老师留下来比别人多"奋战"一段时间,才能完成任务。
三、清晰的草稿
在打草稿的时候,很多同学的字写得总是很大,并且很不整洁,这就导致计算和后期检验的问题,本人"受益匪浅"啊!所以我在打草稿的时候总是像平常做作业一样,在演算本上写得工工整整的。然后检验,在检验无误之后,再把它们"搬"到作业或试卷上。这样我的正确率就会提高很多。
这些只是我在学习数学时的一些简单的看法,但是这些习惯却让我在学习中总是比别人略胜一畴。当然这些习惯的养成并不是一朝一夕的,而习惯的培养却要从点一滴做起。只要平时注意有效学习,才能逐步形成使自己终身受益的良好习惯。
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情.比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样.王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对.这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果.”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲.其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点.如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×= (千米),=(千米),×2=189(千米).所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米).两个答案,也就是说王星的答案加上小英的答案才是全面的. 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意.否则就容易忽略了另外的答案,犯以偏概全的错误. 关于“0” 0,可以说是人类最早接触的数了.我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量.”这样说显然是不正确的.我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点.而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的.2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等.” “任何数除以0即为没有意义.”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少.一个整体无法分成0份,即“没有意义”.后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数).从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”.在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙. 例如,三角形.三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形.通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度.用6个正三角形就可以铺满地面. 再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度.用4个正四边形就可以铺满地面. 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度.它不能铺满地面. 六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度.用3个正四边形就可以铺满地面. 七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度.它不能铺满地面. 由此,我们得出了.n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度.若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面. 我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面. 例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的.
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里………都离不开数学。我也有几次对数学的亲身经历呢,我挑其中两件事来给大家说一说。记得三年级,有一次,我和妈妈逛超市,超市现在正在搞春节打折活动,每件商品的折数各不相同。我一眼就看中了一袋旺旺大礼包,净含量是628克,原价35元,现在打八折,可是打八折怎么算呢?我问妈妈。妈妈告诉我,打八折就是乘以,也就是35*(元)。我恍然大悟。我准备把这袋旺旺大礼包买下来,可是,妈妈告诉我,可能后面的旺旺大礼包更便宜,要去后面看看。走着走着,果然,我又看见了卖旺旺大礼包的,净含量是650克,原价40元,现在也打八折。这下,我犯了愁,净含量不同,原价也不同,哪个划算呢?我又问妈妈。妈妈告诉我35*(元),40*(元),一袋是628克,现价28元,另一袋是650克,现价32元。用28/628≈,32/650≈0。049,>,所以第二袋划算一点儿,于是,我们买下了第二袋。通过这次购物,我知道了怎样计算打折数,怎样计算哪种物品更划算一些。记得四年级,有一次,我和一个朋友出去玩,朋友的妈妈给我们俩出了一道题:1~100报数,每人可以报1个数,2个数,3个数,谁先报到100,谁就获胜。话音刚落,我便思考怎样才能获胜,我想:这肯定是一道数学策略问题,不能盲目地去报,里面肯定有数学问题,用1+3=4,100/4=25,我不能当第一个报的,只能当最后一个报的,她报X个数,我就报(4-X)个数,就可以获胜,我抱着疑惑的心理去和她报数,显然,她没有思考获胜的策略,我用我的方法去和她报数,到了最后,我果然报到了100,我获胜了。原来这道数学问题是一道典型的对策问题,需要思考,才能获胜。到了六年级,我也学到了这类知识,只不过,更加难了,通过这次游玩,我喜欢上了对策问题,也更加爱思考,寻找数学中的奥秘。数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰顶的。只有在生活中发现数学,感受数学,才能让自己的视野更加开阔!
节约用电保护环境搬到新房子以后,妈妈说:“家里的开销真大啊,每个月水电煤气还有物业费、电梯费要不少钱呢,要节约一点了,还是先去开通分时电表吧!”六个月以后,供电公司的电费账单来了。我问妈妈:“你开通的分时电表真的节约钱了吗?”妈妈说:“你自己去研究一下吧。”我打开账单一看,2009年1月到6月,我们家一共用了2724度电,其中峰时用电量是2060千瓦时,谷时用电量是664千瓦时,峰谷用电量比例是75:25。到底节约了多少钱呢?我拿出笔来一算,如果没有分时电表,我们家应该支付1439元,开通后,只要支付1388元。“妈妈,我们节约了51元钱。”我对着在厨房做饭的妈妈喊道。妈妈从厨房探出头来,说:“分时电表确实节约了,不过,我们还要想想别的节电的方法。你和爸爸也出出主意。”爸爸说:“空调可以把温度调到26度,房间的门窗关严实了,可以节约不少电。”妈妈点点头说:“我记得有首儿歌‘高档启动低档转,慢慢转着就省电,风由凉处吹热处,蒸蒸暑气不愁散。’”我说:“妈妈说得真好,我老是不节约用电,以后我看完电视就及时关掉,上完卫生间一定记着关灯了。”正说着,家里的洗衣机嘟嘟嘟地提醒已经洗好了,我脑袋里灵光一闪:“洗衣机也可以晚上九点以后再洗啊!”妈妈笑着点点头:“确实是个好主意!”我高兴地对妈妈说:“节约了电费,我们就可以买别的好东西了。”妈妈说:“节约电费不仅为家里省了钱,更重要的是节约一度电等于节约4升水等于节约千克煤,等于减少排放千克二氧化碳呢!”我恍然大悟,原来节约用电就是节约能源,就是在保护我们生活的地球啊。我一定要节约用电。
“数学小论文”是让学生以 日记 的形式描述他们发现的数学问题及其解决,是学生数学学习经历的一种书面写作记录。下面是我整理的关于小学六年级的数学小论文,供大家参阅,希望对你的学习有帮助!
小学 六年级数学 小论文
“数学来源于生活,也服务于生活。”数学,经常从人们身边走过,生活中人们都离不开它,它为人们的生活作出了巨大的贡献。在我们的班级中经常要使用到数学,例如算单元平均分、统计校园电费……等等数不胜数,和我们的生活息息相关。
有一次,我和爸爸妈妈去购物,买过年吃的糖。超市里糖的花样可多了,有脆皮糖元一斤,牛皮糖元一斤,牛奶糖元一斤,酥酥糖元一斤,巧克力糖元一斤……但主要分为散称和包装。爸爸妈妈问我:“儿子,你希望买什么糖呢?”我望着玲琅满目的“糖果世界”,不知如何抉择是好,但我自幼喜好巧克力,所以我就选了巧克力糖。这时妈妈又给我出题了,他说:“那儿子,你说我们是买散称的呢,还是买包装的呢?”这我就摸不着头脑了,立即心算起来:散称的巧克力糖元一斤,包装的则一盒。散称的巧克力糖一包才10克,包装的巧克力糖一盒就有1000克呢!不过,单单看重量还不能决出胜负,就让我仔细算算——其实算这个并不难,直接用1000克=1千克 1千克=2斤 ÷2=(元) 元>元 所以散称比包装更划算!我高兴的把我得出的结果告诉妈妈,妈妈高兴的点了点头,夸我爱动脑筋,因此我也就成为了妈妈的"小会计"。
在生活中,各式各样的事情都能从一个普普通通毫不起眼的小事变成一个个生动的数学题。我们常做的应用题,就是在生活中取材,再稍加改编而成的题目。这不,我又在做数学题时发现了一道趣题:
大河上有一座东西向横跨江面的桥,人通过需要五分钟。桥中间有一个 亭子。亭子里有一个看守者,他每隔三分钟出来一次。看到有人通过,就叫 他回去,不准通过。有一个从东向西过桥的聪明人,想了一个巧妙的办法, 终于通过了大桥。
我初看这道题,一点头绪也没有,难不成坐船过去?这是不可能的。难道走了一会往回走?唉,这好像行得通……
我经过反复的计算,先想到了走到2分59秒的时候把头转回去,看守的人就会让我往回走,这样不就过去了吗?后来又想了一会,得出只要在走了2分30秒至2分59秒的时候往回走(最好不要到2分59秒的时候走,因为可能你还没转过头来,看守的人就发现了。),就可以成功过桥。
大家肯定都会说这么容易的题谁都会做,我拿出来吹嘘什么?不,这样子你就错了,我并没有在炫耀自己,我是在告诉大家数学在于联系生活思考,在于全心全意去领悟,而不是拿着别人的成果炫耀。
小学数学论文可以怎么写
数学小论文通过学生对生活中数学问题的观察和发现,引起学生的好奇心和求知欲,使学生体会到数学贴近他们的生活,从而对数学产生亲切感,激发起他们学习数学的热情和兴趣;通过引导学生对课堂中学习的数学知识进行实践运用,让学生感受到数学的实用性,提高数学学习的实效;通过探究趣味题和智慧题,开拓学生的视野,培养学生思维的灵活性和深刻性。现结合笔者的教学实际谈谈数学小论文的几种具体写法。
1.一道数学题的解答。主要是学生对某一道有挑战性的题目简便的或与众不同的解法(包括一题多解)。例如,书后的思考题,奥数题,教师或家长布置的智慧题,数学刊物上的挑战题,平时自己在做题时遇到的有一定难度的题目等。学生通过对这些问题的解决,不但发展了思维,而且体验到一种强烈的成就感,这对他以后数学的学习将是一个巨大的动力。
2.用数学的眼光去分析现实问题。主要指学生用数学的眼光去观察、计算、分析现实问题,获得一种理性的思考。比如,有学生写道:如果每人每天节约1克水,那全国13亿人口每天可以节约1300吨水,发出了“人人节约一滴水,沙漠也能变绿洲”的感慨!还有学生写道:如果每个去银行储蓄的人每次都能为“希望工程”捐1角钱的话,全国那么多储蓄点捐到的钱可以资助多少贫困学生实现上学的梦想呀!学生能从这些角度通过数学的计算去思考社会意义,它的价值就能远远超过数学研究本身。
3.生活中的数学问题。主要用来记录学生在生活中遇到的感兴趣并有亲身体验的有关数学的情境记录。写这种数学小论文的题材特别多,比如,有学生写到了人民币为什么只有1元、2元、5元而没有3元、4元、6元、7元、8元、9元的;再如,有学生写到了他家住的楼房每层有24级楼梯,那么他从1楼到5楼要爬多少级楼梯。这些都是生活中每天要经历的很平常的事,但学生一旦用数学的眼光来观察和思考这些看似平常的生活问题,就在数学和生活之间架起了一座桥梁,能够感受到生活中处处有数学。
4.课堂上的数学问题。主要指学生在课堂数学学习过程中自己的一些思考和发现。这对学生数学学习非常有帮助,比如,有个学生在学习画三角形的高时,发现书上介绍了锐角三角形和直角三角形的三条高,而钝角三角形只介绍了一条高。她在课后通过自己的思考和尝试,画出了钝角三角形的另外两条高,在得到老师的肯定后,欣喜万分,连忙写下了《我发现了钝角三角形的另外两条高》这篇数学小论文。
5.数学实践活动中遇到的问题。主要指学生通过自己亲自动手实践,在实践活动的过程中产生的疑惑、获得的启示和得到的结论等。比如,有个学生在教师还没有上实践活动课“可能性”之前,自己看书并根据书上的内容用红、蓝铅笔去摸,自己动手去探索并验证规律,事后写了一篇 心得体会 ,写出了她在动手实践过程中的想法和体会,让她觉得其乐无穷。
6.数学童话。主要指学生发挥丰富的 想象力 ,用童话的形式(其中包含着数学论述)来记录看到的数学世界。这是语文学科和数学学科一种很好的整合,那种独特的视角,生动的语言描述,让教师耳目一新。
今天下午,老师照例发了一张试卷。其中有一道很难的题,我想了半天也没想出个所以然,这道题是这样的: 有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数。求它的体积。 我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示。这可怎么入手啊! 正当我急得抓耳挠腮之际,我妈妈的一个同事来了。他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉。于是,他又教我另一种方法:先列出数,再逐一排除。我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字。这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条 棱长(且长度都为质数)之和。于是,我开始分辩这两个数各是哪个数。 最后,我得到了结果,为374立方厘米。我的算式是:209=11×1919=2+1711×2×17=374(立方厘米) 后来,我又用我本学期学过的知识:分解质因数验算了这道题,结果一模一样。 解出这道题后,我心里比谁都高兴。我还明白了一个道理:数学充满了奥秘,等待着我们去探求。
应该是有几种方法 为什么 做完这题后的感受是什么(要联系生活) 这样才是生活数学小论文!
让学生学习生活中的数学 ——我校开展数学实践活动的做法及体会 自主、合作、探究是新课程学习方式的三个基本维度,适时有效地开展数学实践活动,让学生在实践中自主、自悟、自得,从而将书本知识内化为自己的知识、技能,有利于培养学生学习数学的兴趣,促进学生个性、特长和谐发展,从而全面提高学生的综合素质。下面谈谈我校开展数学实践活动的做法及体会。 (一)一 选取内容要符合学生年龄特点,可操作性强。 数学实践活动是一项实践性较强的活动,是教师结合学生生活经验和知识背景。引导学生自主探索和合作交流的学习活动。这个活动必须建立在学生原有知识的基础上,是其年龄段感兴趣,做得了的。只有这样,学生才能在活动中更好地积累经验,感悟、理解数学知识的内涵。发展解决问题的策略,体会学习与现实生活的联系,调动学习情感,为今后更有效地学习打好基础。 本学期我们在一年级学生中开展了“问题银行”活动,提供探究性学习场所,让学生敢问、会问、善问,并以各自不同的方式理解和解答问题。学生通过同学间的合作、问爸爸妈妈、爷爷奶奶、找课外书等途径,让学生从以往什么都是“老师说”的怪圈中跳出来,从小养成积极思考,敢于探索的良好品质。活动中,同学共提出不同问题100多条,一年四班黄悦同学一人提出八个问题,表现出了良好的问题意识和求异思维能力。二年级开展了“我家的数字”活动,同学们通过度一度,量一量,对书本上介绍的长度单位的认识由抽象到直观。并通过电脑合成、手抄报等形式展示了各自的才能三年级“寻找家中的周长”;四年级“生日派对方案”;五年级“我的设计”;六年级“走出课堂、走进银行”等,这些活动,符合学生的年龄特点,是课堂学习的延伸和拓展。反过来又给课堂教学带来了主动、生动、互动的效果,使课堂教学从“掌握型”走向“创新型”,为同学的自主学习探究学习开辟了广阔天地。二活动过程中,及时交流,互相启发,逐步完善。 数学实践活动是一项综合性很强的活动过程。再小的活动都不可能一下子完成。要经历确定活动目标、内容——拟定活动计划——组织具体实施——交流反馈评价等程序。在活动过程中,既要放手让学生去体验,去创造,又要及时反馈、及时指导,还要有一定的时间保证。例如,在学完《圆的认识》后,为使学生能灵活、正确使用圆规画圆,进一步了解圆心、直径、半径等名词,鼓励学生画一幅以圆为主流的平面图。学生作业交上来后,有简笔画、水彩画、想象画、漫画等,种类繁多,色彩鲜艳。但构思比较简单,主题欠鲜明,只是大大小小圆的组合,寓意欠深刻。遇到这种情况,老师并不急于品头论足,而是适时组织同学在小组、全班范围交流创作的意念、创作过程及创作体会。从而感受别人思维的不同。互向启发,逐步完善自己的作品。最后,一批主题鲜明,构思新颖,时代感强的作品脱颖而出。这样,活动让学生经历了失败、尝试了方法、体验了过程,这就是收获!更重要的是,一次又一次的实践活动给学生带来了学习方式的变革以及知识、能力方面的提高与发展。三关注过程与方法、情感与态度而不仅仅是结果。 综合实践活动是教师指导下的学生自己进行的合作学习活动。实践活动的开展,是让学生通过自己的亲身经历来了解、关注,并试着去分析解决自己所关注的问题。这些问题在我们看来可能是幼稚的,没有意义的,而有些问题是他们根本无法解决的。但我们更明白,综合实践活动的根本目的不是只为了让学生真正解决某个实际问题,更不是要一个完美的解决办法。而是注重在关注并试图解决这个问题的过程中,学生是怎样发现问题的,是怎样思考并试图解决问题的,在关注这个问题的过程中有所体验,有所感悟,学生的身心、情感、思维、态度都有了哪些变化。通过实践活动来认识自己,关爱生活、发展自己,这才是开展实践活动的目标所在。《数学课程标准》中指出:“教师应该充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现时生活中的应用价值。”在学习《统计表、统计图的整理和复习》时,我们组织学生,以小组为单位,通过网络、调查访问、翻阅书报、杂志、课外书获得信息,巧妙地制成统计图或统计表。在这一活动中,数学知识不再是脱离生活的各种练习,而是充分体现实践活动的再创造。情感体验伴随着活动的始终。因此,他们敏锐的新闻触觉,扎实的数学基础知识、良好的审美观念等,展现了现代孩子超人的想象力和创造力,体现了学生的创新意识和创新品质。另外,在每次活动中,我们都十分关注学生的个体差异。注意保护每一个孩子的自尊心和自信心,让学生在活动中互相交流,在评价中点燃思维的火花,拓展知识的视野,了解斑斓的世界,共享成功的喜悦。(二)一 师生互动,有助于教师观念更新 在综合实践活动中,居高临下的师道尊严受到冲击。综合实践活动毕竟是一个崭新的课题,它面向的不仅仅是学生,而是更广阔的生活世界,在纷杂的世界里,学生是学生,教师也是学生。而在某些方面,学生比老师更富有想象,创新能力更强。这就意味着老师要向学生学习,让师生关系真正走向平等。使老师对自己的教学认真反思,调整自己,以适应新的形势。六年级同学的《环市中路行车情况统计表》、《我国搜寻飞行员王伟派出舰船、飞机数量统计图》等,表现了现代孩子对社会的关注。他们已不再只是向老师学习加、减、乘、除运算的小不点,而是关注社会大家庭的一分子。在综合实践活动中,老师作用的最大发挥,是为学生在自由空间的自由展现创设良好的氛围,提供广阔的空间。给学生信心,相信学生自己有能力,能做好。老师自己要虚心,不先入为主,不存偏见,设身处地,为学生着想,为学生的终身发展着想。尊重学生个性,尊重人与人的差异,使每个学生在自己原有的基础上,有所提高,有所发展,而不能强求一律,厚此薄彼,建立真正平等的师生关系。二 学身边的数学,学生有浓厚的兴趣 数学实践活动是数学活动的教学,是师生之间,生生之间互动与共同发展的过程。在这个过程中,要重视学生参与的情感体验,让学生在活动中感受数学,体验数学的作用,培养学生自觉地把数学应用于实际的意识和态度,使数学真正成为学生手中的工具,体会到数学巨大的应用价值。二年级学过长度单位厘米、分米、米后,通过量一量家人的身高,家用电器的长、宽等,培养了学生的数感,提高了学生应用知识的能力。三年级“寻找家中的周长”,五年级的“我的设计”等把现实生活中的实际问题转化为数学问题,使学生的实践应用能力得到提高。这样学生不仅可以把书本上的知识与实际联系,体会到数学的社会价值,还可以学到书本上学不到的知识,在实践中使知识得到升 华。学生觉得,他们今天的学习与生活密切相关,真正实现了愿学、乐学、会学。三 综合利用知识,有助于学生综合能力的提高 《数学课程标准》指出:“有效的数学活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”学生通过数学实践活动了解数学与生活的广泛联系,学会综合运用所学的知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。综合起来。能培养学生这几方面的能力:一是收集信息、整理信息的能力;二是与他人合作交流的能力;三是利用所学知识解决实际问题的能力等。更重要的是,在数学实践活动中,学生经历观察、操作、实验、调查、推理等活动,在合作与交流的过程中,获得了良好的情感体验,感受数学知识间的相互联系,体会数学的作用。促进学生全面、持续和谐地发展。这是21世纪拔尖人才所必须的素质,也是《数学课程标准》所倡导的新的学习方式。学科实践活动作为一种新的学习内容及方式,对于我们来说是一个崭新的课题。在实践和探索中我们认识到,学生的学习不仅是知识的积累,更应在知识应用中强调灵活应用的意识;不仅要让学生主动地获取知识,还要让学生去发现和研究问题;不仅要让学生运用知识解决实际问题,更要在寻求问题解决的过程中激发学生的创新潜能,感悟学习思想和方法。
虽然不太明白什么意思,还是靠我的理解给你写一篇吧.(我是按学生写的,你应该不是老师吧)小学6年级数学小论文小学的学习即将结束,我对小学数学也有了一些了解,在此篇论文中做一下总结.小学数学主要是奠定数学的一些最基础的概念,除了基本正有理数运算外,有两个主要部分,一是图形或几何体体积、面积的求解以及性质,即几何部分;二是一次方程以及其实际应用,即代数部分.下面我将依次说明.几何部分.几何是数学中一个重要分支,在小学,我们学习了一些几何公式,像三角形:C△=三角形三边之和S△=底×高÷2平行四边形:C=四边之和S=底×高圆形:C=2πrS=πr²立方体(长方体):S=六面面积之和V=底面积×高圆柱体:S=S侧+2S底V=S底×高还学会了一些几何性质,如平行四边形对边相等,有一个角是直角的平行四边形是矩形,圆柱体的侧面展开是一个长方形等,这些性质加深了我们对几何图形的理解,让我们能够根据这些性质解决一些简单的几何问题,并理解几何的一些公式.代数部分.代数是贯穿整个数学的思想,在小学,我们学习了正有理数的一些基本运算,还学习了一元一次方程与二元一次方程的列与解,简单了解了移项,合并同类项等一些基本解方程地方法,并能够利用方程解决一些实际问题,这些都是为今后高次方程与函数奠定的基础.这些是我们在6年学习的一些主要数学知识,我们应记牢小学中学过的知识,以便今后更深入的研究.
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情.比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样.王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对.这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果.”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲.其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点.如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×= (千米),=(千米),×2=189(千米).所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米).两个答案,也就是说王星的答案加上小英的答案才是全面的. 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意.否则就容易忽略了另外的答案,犯以偏概全的错误. 关于“0” 0,可以说是人类最早接触的数了.我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量.”这样说显然是不正确的.我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点.而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的.2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等.” “任何数除以0即为没有意义.”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少.一个整体无法分成0份,即“没有意义”.后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数).从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”.在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙. 例如,三角形.三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形.通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度.用6个正三角形就可以铺满地面. 再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度.用4个正四边形就可以铺满地面. 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度.它不能铺满地面. 六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度.用3个正四边形就可以铺满地面. 七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度.它不能铺满地面. 由此,我们得出了.n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度.若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面. 我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面. 例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的.
数学发展史 此书记录了世界初等数学的发展与变迁。可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。是将历史与数学结合出的趣味百科读物。数的出现一、数的概念出现 人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚。这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步。数字与符号的起源与发展一、数的出现 很快,人类就又迈出了一大步。随着文字的出现,最原始的数字就出现了。且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”。在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字。它们告诉了我们:简洁的,就是最好的。 而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦。其实,人是高等动物 ,理解能力强,从古至今都以十为整,所以习惯了十进制。可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码。于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器。但不可否认的是,它又创造了一种新的数码表示方法。二、符号的出现 加减乘除〈+、-、×(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简单,直到17世纪中叶才全部形成。 法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足。1、加号(+)和减号(-) 加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。到1514年,荷兰的赫克首次用“+”表示加法,用“-”表示减法。1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“-”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用。2、乘号(×、·) 乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。英国数学家奥特雷德于1631年出版的《数学之钥》中引入这种记法。据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。另一乘号“·”是数学家赫锐奥特首创的。后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认。3、除号(÷) 除法除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。 至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度。4、等号(=) 等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。分数一、分数的产生与定义 人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。 一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。 分子,分母同时乘或除以一个相同的数〔0除外〕,分数的大小不变.这就是分数的基本性质.分数一般包括:真分数,假分数,带分数. 真分数小于1. 假分数大于1,或者等于1. 带分数大于1而又是最简分数.带分数是由一个整数和一个真分数组成的。 注意 :①分母和分子中不能有0,否则无意义。 ②分数中的分子或分母不能出现无理数(如2的平方根),否则就不是分数。 ③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)二、分数的历史与演变 分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。 在历史上,分数几乎与自然数一样古老。早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数。 在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度。早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数。 公元前1850年左右的埃及算学文献中,也开始使用分数。200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是3/7 米.像3/7 就是一种新的数,我们把它叫做分数. 为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征.例如,一只西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要——除法运算的需要而产生的. 最早使用分数的国家是中国.我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。 《九章算术》是我国1800多年前的一本数学专著,其中第一章《方田》里就讲了分数四则算法. 在古代,中国使用分数比其他国家要早出一千多年.所以说中国有着悠久的历史,灿烂的文化 。几何一、公式1、平面图形正方形: S=a² C=4a三角形: S=ah/2 a=2S/h h=2S/a平行四边形:S=ah a=S/h h=S/a梯形: S=(a+b)h/2 h=2S/(a+b) a=2S/h-b b=2S/h-a圆形: S=∏r² C=2r∏=∏d r=d/2=C/∏/2r²=S/∏ d=C/∏半圆: S=∏r²/2 C=∏r+d= 顶点数+面数-块数=12、立体图形正方体: V=a³=S底·a S表=6a² S底=a² S侧=4a² 棱长和=12a长方体: V=abh=S底·h S表=2(ab+ac+bc) S侧=2(a+b)h 棱长和=4(a+b+h)圆柱: V=∏r²h S表=2∏r²+∏r²h=S底(h+2) S侧=∏r²h S底=∏r² 其它柱体:V=S底h锥体: V=V柱体/3球: V=4/3∏r³ S表=4∏r²顶点数+面数-棱数=2数论一、数论概述 人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们合起来叫做整数。(现在,自然数的概念有了改变,包括正整数和0) 对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。 人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。 数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。 二、数论的发展简况 自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。 自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。 在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。 到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。 在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。 由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。三、数论的分类初等数论 意指使用不超过高中程度的初等代数处理的数论问题,最主要的工具包括整数的整除性与同余。重要的结论包括中国剩余定理、费马小定理、二次互逆律等等。解析数论 借助微积分及复分析的技术来研究关于整数的问题,主要又可以分为积性数论与加性数论两类。积性数论藉由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。此外例如筛法、圆法等等都是属于这个范畴的重要议题。我国数学家陈景润在解决“哥德巴赫猜想”问题中使用的是解析数论中的筛法。 代数数论 是把整数的概念推广到代数整数的一个分支。关于代数整数的研究,主要的研究目标是为了更一般地解决不定方程的问题,而为了达到此目的,这个领域与代数几何之间的关联尤其紧密。建立了素整数、可除性等概念。 几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。主要在于透过几何观点研究整数(在此即格子点)的分布情形。几何数论研究的基本对象是“空间格网”。在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。最著名的定理为Minkowski 定理。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。 计算数论 借助电脑的算法帮助数论的问题,例如素数测试和因数分解等和密码学息息相关的话题。 超越数论 研究数的超越性,其中对于欧拉常数与特定的 Zeta 函数值之研究尤其令人感到兴趣。 组合数论 利用组合和机率的技巧,非构造性地证明某些无法用初等方式处理的复杂结论。这是由艾狄胥开创的思路。四、皇冠上的明珠 数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。 简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、角谷猜想、圆内整点问题、完全数问题…… 五、中国人的成绩 在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。 特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。名著录《几何原本》 欧几里得 约公元前300年 《周髀算经》 作者不详 时间早于公元前一世纪 《九章算术》 作者不详 约公元一世纪 《孙子算经》 作者不详 南北朝时期 《几何学》 笛卡儿 1637年 《自然哲学之数学原理》 牛顿 1687年 《无穷分析引论》 欧拉 1748年 《微分学》 欧拉 1755年 《积分学》(共三卷) 欧拉 1768-1770年 《算术探究》 高斯 1801年 《堆垒素数论》 华罗庚 1940年左右 任意选一段吧!!!
可以自己删减删减。数学论文 一、数学技能的含义及作用 技能是顺利完成某种任务的一种动作或心智活动方式。它是一种接近自动化的、复杂而较为完善的动作系统,是通过有目的、有计划的练习而形成的。数学技能是顺利完成某种数学任务的动作或心智活动方式。它通常表现为完成某一数学任务时所必需的一系列动作的协调和活动方式的自动化。这种协调的动作和自动化的活动方式是在已有数学知识经验基础上经过反复练习而形成的。如学习有关乘数是两位数的乘法计算技能,就是在掌握其运算法则的基础上通过多次的实际计算而形成的。数学技能与数学知识和数学能力既有密切的联系,又有本质上的区别。它们的区别主要表现为:技能是对动作和动作方式的概括,它反映的是动作本身和活动方式的熟练程度;知识是对经验的概括,它反映的是人们对事物和事物之间相互联系的规律性的认识;能力是对保证活动顺利完成的某些稳定的心理特征的概括,它所体现的是学习者在数学学习活动中反映出来的个体特征。三者之间的联系,可以比较清楚地从数学技能的作用中反映出来。 数学技能在数学学习中的作用可概括为以下几个方面: 第一,数学技能的形成有助于数学知识的理解和掌握; 第二,数学技能的形成可以进一步巩固数学知识; 第三,数学技能的形成有助于数学问题的解决; 第四,数学技能的形成可以促进数学能力的发展; 第五,数学技能的形成有助于激发学生的学习兴趣; 第六,调动他们的学习积极性。 二、数学技能的分类 小学生的数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。 l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不能省略和合并,是一种展开性的活动程序。如用圆规画圆,确定半径、确定圆心、圆规一脚绕圆心旋转一周等步骤,既不能省略也不能合并,必须详尽地展开才能完成的任务。 2.数学心智技能。数学心智技能是指顺利完成数学任务的心智活动方式。它是一种借助于内部言语进行的认知活动,包括感知、记忆、思维和想象等心理成分,并且以思维为其主要活动成分。如小学生在口算、笔算、解方程和解答应用题等活动中形成的技能更多地是一些数学心智技能。数学心智技能同样是经过后天的学习和训练而形成的,它不同于人的本能。另外,数学心智技能是一种合乎法则的心智活动方式,“所谓合乎法则的活动方式是指活动的动作构成要素及其次序应体现活动本身的客观法则的要求,而不是任意的”。这些特性,反映了数学心智技能和数学操作技能的共性。数学心智技能作为一种以思维为主要活动成分的认知活动方式,它也有着区别于数学操作技能的个性特征,这些特征主要反映在以下三个方面。 第一,动作对象的观念性。数学心智技能的直接对象不是具有物质形式的客体本身,而是这种客体在人们头脑里的主观映象。如20以内退位减法的口算,其心智活动的直接对象是“想加法算减法”或其他计算方法的观念,而非某种物质化的客体。第二,动作实施过程的内隐性。数学心智技能的动作是借助内部言语完成的,其动 作的执行是在头脑内部进行的,主体的变化具有很强的内隐性,很难从外部直接观测到。如口算,我们能够直接了解到的是通过学生的外部语言所反映出来的计算结果,学生计算时的内部心智活动动作是无法看到的。 第三,动作结构的简缩性。数学心智技能的动作不像操作活动那样必须把每一个动作都完整地做出来,也不像外部言语那样对每一个动作都完整地说出来,它的活动过程是一种高度压缩和简化的自动化过程。因此,数学心智技能中的动作成分是可以合并、省略和简化的。如20以内进位加法的口算,学生熟练以后计算时根本没有去意识“看大数”、“想凑数”、“分小数”、“凑十”等动作,整个计算过程被压缩成一种脱口而出的简略性过程。 三、数学技能的形成过程 1.数学操作技能的形成过程。 数学操作技能作为一种外显的操作活动方式,它的形成大致要经过以下四个基本阶段。 (1)动作的定向阶段。这是操作技能形成的起始阶段,主要是学习者在头脑里建立起完成某项数学任务的操作活动的定向映象。包括明确学习目标,激起学习动机,了解与数学技能有关的知识,知道技能的操作程序和动作要领以及活动的最后结果等内容。概括起来讲,这一阶段主要是了解“做什么”和“怎样做”两方面的内容。如画角,这一阶段主要是了解需画一个多少度的角(即知道做什么)和画角的步骤(即怎么做),以此给画角的操作活动作出具体的定向。动作定向的作用是在头脑里初步建立起操作的自我调节机制;通过对“做什么”和“怎么做”的了解而明确实施数学活动的程序与步骤,从而保证在操作中更好地掌握其动作的活动方式。 (2)动作的分解阶段。这是操作技能进入实际学习的最初阶段,其作法是把某项数学技能的全套动作分解成若干个单项动作,在老师的示范下学生依次模仿练习,从而掌握局部动作的活动方式。如用圆规按照给定的半径画圆,在这一阶段就可把整个操作程序分解成三个局部动作:①把圆规的两脚张开,按照给定的半径定好两脚间的距离;②把有针尖的一脚固定在一点上,确定出圆心;③将有铅笔尖的一脚绕圆心旋转一周,画出圆。通过对这三个具有连续性的局部动作的依次练习,即可掌握画圆的要领。学生在这一阶段学习的方式主要是模仿,一方面根据老师的示范进行模仿;另一方面也可以根据有关操作规则的文字描述进行模仿,如根据几何作图规则对各个动作活动方式的表述进行模仿。模仿不一定都是被动的和机械的,“模仿可以是有意的和无意的;可以是再造性的,也可以是创造性的。”②模仿是数学操作技能形成的一
数学教师应让学生明白数学阅读的重要性,让学生尤其是后进生时常感到他们通过阅读而成功地学会了一些东西,以提高数学阅读的自觉性,小编收集了六年级上册数学教学论文:浅谈小学数学阅读的重要性。阅读是人类社会生活的一项重要活动,是人类汲取知识的主要手段和认识世界的重要途径。一谈及阅读,人们联想的往往是语文阅读,然而,随着社会的发展、科学技术的进步及“社会的数学化”,仅具语文阅读能力的社会人已明显地显露出其能力的不足,如他们看不懂某些产品使用说明书,看不懂股市走势图,等等。此即表明,现代及未来社会要求人们具有的阅读能力已不再只是语文阅读能力,而是一种以语文阅读能力为基础,包括外语阅读能力、数学阅读能力、科技阅读能力在内的综合阅读能力。因此,在只重视语文阅读能力培养的今天学校教育中,加强学科阅读教育研究,探索学科阅读教学的特殊性及教育功能,认识学科阅读能力培养的重要性,就显得尤为重要。本文想就数学阅读先抒已见,以求教于大方。1.数学阅读的特殊性数学是一种语言,“以前,人们认为数学只是自然科学的语言和工具,现在数学已成了所有科学——自然科学、社会科学、管理科学等的工具和语言”。不过,这种语言与日常语言不同,“日常语言是习俗的产物,也是社会和政治运动的产物,而数学语言则是慎重地、有意地而且经常是精心设计的”。因此,美国著名心理学家布龙菲尔德()说:“数学不过是语言所能达到的最高境界”。更有前苏联数学教育家斯托利亚尔言:“数学教学也就是数学语言的教学”。而语言的学习是离不开阅读的,所以,数学的学习不能离开阅读,这便是数学阅读之由来。数学阅读过程同一般阅读过程一样,是一个完整的心理活动过程,包含语言符号(文字、数学符号、术语、公式、图表等)的感知和认读、新概念的同化和顺应、阅读材料的理解和记忆等各种心理活动因素。同时,它也是一个不断假设、证明、想象、推理的积极能动的认知过程。但由于数学语言的符号化、逻辑化及严谨性、抽象性等特点,数学阅读又有不同于一般阅读的特殊性,认识这些特殊性,对指导数学阅读有重要意义。首先,由于数学语言的高度抽象性,数学阅读需要较强的逻辑思维能力。在阅读过程中,读者必须认读感知阅读材料中有关的数学术语和符号,理解每个术语和符号,并能正确依据数学原理分析它们之间的逻辑关系,最后达到对材料的本真理解,形成知识结构,这中间用到的逻辑推理思维特别多。而一般阅读“理解和感知好像融合为一体,因为这种情况下的阅读,主要的是运用已有的知识,把它与新的印象联系起来,从而掌握阅读的对象”,较少运用逻辑推理思维。其次,数学语言的特点也在于它的精确性,每个数学概念、符号、术语都有其精确的含义,没有含糊不清或易产生歧义的词汇,数学中的结论错对分明,不存在似是而非模棱两可的断言,当一个学生试图阅读、理解一段数学材料或一个概念、定理或其证明时,他必须了解其中出现的每个数学术语和每个数学符号的精确含义,不能忽视或略去任何一个不理解的词汇。因此,浏览、快速阅读等阅读方式不太适合数学阅读学习。第三,数学阅读要求认真细致。阅读一本小说或故事书时,可以不注意细节,进行跳阅或浏览无趣味的段落,但数学阅读由于数学教科书编写的逻辑严谨性及数学 “言必有据”的特点,要求对每个句子、每个名词术语、每个图表都应细致地阅读分析,领会其内容、含义。对新出现的数学定义、定理一般不能一遍过,要反复仔细阅读,并进行认真分析直至弄懂含义。数学阅读常出现这种情况,认识一段数学材料中每一个字、词或句子,却不能理解其中的推理和数学含义,更难体会到其中的数学思想方法。数学语言形式表述与数学内容之间的这一矛盾决定了数学阅读必须勤思多想。第四,数学阅读过程往往是读写结合过程。一方面,数学阅读要求记忆重要概念、原理、公式,而书写可以加快、加强记忆,数学阅读时,对重要的内容常通过书写或作笔记来加强记忆;另一方面,教材编写为了简约,数学推理的理由常省略,运算证明过程也常简略,阅读时,如果从上一步到下一步跨度较大,常需纸笔演算推理来“架桥铺路”,以便顺利阅读;还有,数学阅读时常要求从课文中概括归纳出一些东西,如解题格式、证明思想、知识结构框图,或举一些反例、变式来加深理解,这些往往要求读者以注脚的形式写在页边上,以便以后复习巩固。第五,数学阅读过程中语意转换频繁,要求思维灵活。数学教科书中的语言可以说是通常的文字语言、数学符号语言、图形语言的交融,数学阅读重在理解领会,而实现领会目的的行为之一就是“内部言语转化”,即把阅读交流内容转化为易于接受的语言形式。因此,数学阅读常要灵活转化阅读内容。如把一个用抽象表述方式阐述的问题转化成用具体的或不那么抽象的表达方式表述的问题,即“用你自己的语言来阐述问题”;把用符号形式或图表表示的关系转化为言语的形式以及把言语形式表述的关系转化成符号或图表形式;把一些用言语形式表述的概念转化成用直观的图形表述形式;用自己更清楚的语言表述正规定义或定理等。总之,数学阅读常要求大脑建起灵活的语言转化机制,而这也正是数学阅读有别于其它阅读的最主要的方面。2.数学阅读的教育功能学生智力发展的诊断研究表明,学生的“数学语言”的特点及掌握数学术语的水平,是其智力发展和接受能力的重要指标。数学语言发展水平低的学生,课堂上对数学语言信息的敏感性差,思维转换慢,从而造成知识接受质差量少。教学实践也表明,数学语言发展水平低的学生的数学理解力也差,理解问题时常发生困难和错误。因此,重视数学阅读,丰富数学语言系统,提高数学语言水平有着重要而现实的教育意义。其独特作用甚至是其它教学方式所不可替代的。首先,重视数学阅读有助于数学语言水平的提高及数学交流能力的培养。所谓数学交流(mathematical Communication)是指数学信息接收、加工、传递的动态过程。狭义指数学学习与教学中使用数学语言、数学方法进行各类数学活动的动态过程。无论从学习数学的角度还是使用数学的角度看,数学交流都有极重要的作用。而数学交流的载体是数学语言,因此,发
今天下午,老师照例发了一张试卷。其中有一道很难的题,我想了半天也没想出个所以然,这道题是这样的: 有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数。求它的体积。 我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示。这可怎么入手啊! 正当我急得抓耳挠腮之际,我妈妈的一个同事来了。他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉。于是,他又教我另一种方法:先列出数,再逐一排除。我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字。这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条 棱长(且长度都为质数)之和。于是,我开始分辩这两个数各是哪个数。 最后,我得到了结果,为374立方厘米。我的算式是:209=11×1919=2+1711×2×17=374(立方厘米) 后来,我又用我本学期学过的知识:分解质因数验算了这道题,结果一模一样。 解出这道题后,我心里比谁都高兴。我还明白了一个道理:数学充满了奥秘,等待着我们去探求。
数学小论文 数学,经常从人们身边走过,生活中人们都离不开它,它为人们的生活作出了巨大的贡献。 在我们的班级中经常要使用到数学。比如班级收饭费,一个班共有62名同学。在校吃饭的有60名同学,每人应付85元。这样的话便要算出60人一共应付几元。应用乘法就可以很简便的算出结果。只要用85×60=全班60人应付几元。这是我们身边最普通的例子了。 在我们的生活中,与数学的关系也十分的密切。大家一星期都要上一次超市的,但身上往往只会带50元--80元左右。这个时候,我们就要很有计划的买东西了。但是,商品的价格往往不是一个整数,如一块香皂元,一双布鞋元。这时,我们就要有良好的口算能力。上超市总不能每一次都带着一个计算器。所以要想好了买,算好了买,要不然,钱就不够了。 如果你长大了成了一名设计工人,那你就要把每一块砖的长、宽都算的一清二楚呀!连的误差都不能有! 由此可见,数学是多么重要啊!所以,我们现在要学好数学,长大后才能去建设我们的祖国!
《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。