秀之美--艳梅
作物栽培学作物栽培技术作物育种学实验农业概论农业系统工程学农学庄稼医生技术手册植物育种原理与方法植物雄性不育机理的研究及应用油菜优质高产栽培技术油菜品质改良和分析方法油菜生态和遗传育种研究芸薹属植物的生物工程2004年加拿大油菜研究情况简介21世纪初湖南油菜生产发展趋势2BF-6型稻茬田油菜免耕联合播种机的研究681A不育胞质对杂种一代农艺性状的影响ACC合成酶基因技术在培育延熟保鲜果品上的应用ASK1 physically interacts with COI1 and is required for male fertility in ArabidopsisBiodiesel production and its development strategyBreeding and agronomic characters of Bt transgenic insect-resistant Brassica napus linesBt杀虫蛋白基因在转基因油菜中的动态表达与其抗虫性研究Bt毒蛋白基因与植物抗虫基因工程Bt毒蛋白基因导入甘蓝型油菜获得转基因植株Bt毒蛋白基因的研究进展Cytogenetic studies on rapeseed. The analysis of salient feature on the chromosomal morphology of mitotic prophase in rapeseedEffects of lipoxygenase null genes of soybean in controlling beany-flavor of soymilk and soyflourInheritance and mapping of a restorer gene for the rapeseed cytoplasmic male sterile line 681ARAPD Assessment of Genetic Diversity ofRAPD技术及其在油菜遗传育种上的应用Sensitivity of Maize Seed Germ ination and Seedling Growth to Water EnvironmentStudies and application of CHA and its hybrid of winter rapeseed (B. napus) in ChinaStudies of Graft Transfer of Endogenous Gibber ilic AcidsStudies on cytology of visible chromosome formation under the light microscope during cell cycle in rapeseedTA-29基因与转基因油菜杂交系TE缓冲液对RAPD带型的影响The effect of ZMA on inducing male sterility on spring canolaWeb农业专家系统多媒体技术的应用研究^60Co电离辐射对油菜影响的研究“单低 双低油菜系列标准”制定的必要性“单低 双低油菜系列标准”的制定及评价“单低 双低油菜系列标准”的推广与实施情况不同基因型水稻产量和品质的物质代谢研究不同播期对不同基因型油菜产量特性的影响不同播种期油菜与气象因子的关系不同施氮水平和氮素来源烟叶碳氮比及其与碳氮代谢的关系不同栽培方式对辣椒采后病害的影响不同植物激素对油菜角果生长和结实的影响不同氮量和氮源的烟叶高级脂肪酸含量及其与香吃味的关系 世界油菜生产的发展和我国长江流域油菜带的开发两系亚种间与品种间杂交稻籽粒充实度的比较研究两系亚种间杂交稻籽粒充实度的遗传研究两系亚种间杂交稻籽粒充实度的配合力研究两系杂交稻籽粒充实度亲子相关研究中国芸芥形态特征特性及类型研究中国芸芥栽培品种亲缘关系的RAPD分析中国芸芥遗传多样性RAPD标记分析亚种间杂交稻籽粒充实度研究进展优质油菜新品种湘农油571的选育传播科技信息荟萃学术新篇作物产量和品质的碳氮及脂肪代谢调控的研究进展作物收获指数的研究概况作物源─库关系研究的现状作物生长模拟模型技术作物生长模拟模型研究概述俄罗斯油菜育种俄罗斯的油菜育种光叶杂交油菜油用及菜用特性的研究光周期对水稻源库关系的影响关于植物随机引物扩增多态性DNA标记的可靠性问题关于油菜化学杀雄杂种的几点说明内源赤霉素与油菜不同种性品种花芽分化的关系的研究农业大学与职业中学联合建立农业技术推广网络的探讨农业高新技术股份制企业式教学基地建设的探讨农学专业“六边”实习的教学改革探索农学专业《农学实践》课程的设置农学专业学生实践技能训练的系统构建农学专业改革的探讨几种分析方法对杂种棉后代综合评价的比较研究几种化学药物对油菜杀雄效果的研究几种酶活性与油菜油分和蛋白质及产量的关系加拿大卡诺拉的生产和销售加拿大油菜品种的演变及现状匈牙利捷克波兰高等教育考察的启示化学杂交剂诱导油菜雄性不育机理的研究 ⅡKMS-1对甘蓝型油菜育性的影响化学杂交剂诱导油菜雄性不育机理的研究十字花科种间杂交亲和性雄性不育细胞质遗传效应十字花科芸薹属种间杂种营养优势的利用研究单双低油菜研究进展双低杂交油菜新品种湘杂油6号的选育双低油菜品种湘油13号选育及品种特性研究双低油菜新品种湘油15号双低油菜新品种湘油15号的选育双低油菜核心竞争力的研究双低油菜湘油11号高产长势长相及栽培技术的探讨双低油菜湘油15Bnapus对菌核病抗性的研究双低油菜湘油15号对菌核病抗性研究简报双低油菜湘油15号种植密度的调查国外关于Sinapis arvensis L.的一些研究基于Web的油菜生产专家系统施肥知识表示基于Web的油菜生产专家系统的研究与应用基于人工智能的理科电子教材的设计与实现基因克隆技术的研究进展基因工程技术与油菜杂种优势利用基因工程技术与油菜育种基因枪法向甘蓝型油菜转移反义FAD2基因的研究外源基因在转基因抗虫油菜中的遗传行为外源基因直接转移技术之评价大学理科教材汲取人文社会科学的方法与技巧大豆种子脂肪氧化酶与豆制品产生豆腥味关系的研究进展大豆种子脂肪氧化酶的缺失对其农艺性状的影响大豆种子脂肪氧化酶的缺失对种子劣变的影响大豆种子脂肪氧化酶缺失基因控制豆腥味效果的研究大豆种子脂肪氧合酶缺失体类型的加工特性研究大豆脂肪氧化酶生理作用研究进展威优207水稻种子对汞铜锌胁迫的耐抗性研究子房注射法与农杆菌介导法转化甘蓝型油菜的比较研究建立“大农学专业”的实践影响油菜收获指数的几个生理因子抓住机遇,加快发展优质油菜抓住机遇,发展优质油菜抗除草剂油菜研究及其进展拟南芥ASK1与COI1形成蛋白复合体并调控雄性不育改变冬油菜栽培方式,提高和发展油菜生产新疆野生油菜与甘蓝型油菜属间杂种分子鉴定新疆野生油菜与野芥Sinapis arvensis L遗传性状的比较研究新疆野生油菜与野芥品质性状的比较研究新疆野生油菜细胞遗传学研究----Ⅱ.染色体的形态特征过氧化物酶同工酶和mtDNA分新疆野生油菜细胞遗传学研究施氮对油菜几种酶活性的影响及其与产量和品质的关系施钾对油菜酶活性的影响及其与产量品质的关系无菌苗法在鉴定油菜菌核病抗耐性上的应用杂交油菜制种行比的研究杂交油菜湘杂油1号的高产分析根癌农杆菌介导TA29-Barnase基因转化甘蓝型油菜的研究植物RAPD标记的可靠性研究植物体细胞无性系变异及其突变体的RAPD鉴定分析植物基因工程与油菜品种改育植物基因工程的新方向——叶绿体基因工程植物抗病基因克隆的研究进展植物淀粉合成的调控酶植物雄性不育的遗传机制探讨水稻幼穗分化期间减源对源库关系的影响油菜Brassica napus L收获指数的变异油菜RAPD反应体系的优化研究油菜、玉米、晚稻三熟制高产栽培的配套技术油菜不同发育时期喷施杀雄剂1号的杀雄效果和对花药细胞形态的影响油菜不同品种逆境下结实性的研究油菜与芸芥属间杂种离体子房和胚培养研究油菜中内源赤霉素嫁接转移研究油菜产品综合利用的研究:Ⅲ[1].油菜茎杆栽培平菇试验油菜优质高产高效栽培管理多媒体专家系统油菜光温生态特性的研究和应用油菜分子标记图谱构建及抗菌核病性状的QTL定位油菜化学杀雄杂种湘杂油1号湘油11号×466选育报告油菜化学杀雄药物,机理和杂种研究油菜单倍体植株叶原生质体培养再生植株油菜原生质体培养与融合技术的研究进展油菜和芸芥杂交时花粉与柱头识别反应的研究油菜品种与菌核菌相互作用机理研究进展油菜品质育种的研究:Ⅱ.双低油菜湘油11号的选育油菜品质育种的研究:Ⅳ[1]. 甘蓝型油菜种子中硫代葡萄糖甙油菜对菌核病抗耐病性鉴定与抗病育种研究进展油菜对霜霉病抗性鉴定及遗传研究摘要油菜小孢子培养和双单倍体育种研究Ⅰ供体植株和小孢子密度对小孢子培养的影响油菜小孢子培养和双单倍体育种研究Ⅱ影响甘蓝型油菜和芥菜型油菜种间杂种胚产量的因素油菜库器官分化发育期剪叶对源库关系的影响油菜收获指数对经济产量的贡献油菜收获指数的研究摘要油菜无菌苗培养前的种子消毒技术油菜栽培密度与几种酶活性及产量和品质的关系油菜栽培管理多媒体专家系统的设计与实现油菜湘杂油1号的特征特性及栽培技术油菜生产专家系统知识库构建油菜生产情况与科研进展油菜生态特性的研究油菜生态特性的研究:Ⅲ[1].油菜油菜生态特性研究油菜生物量与氮素吸收量及生理效率的动态变化油菜的小孢子培养和双单倍体育种油菜的自交不亲和性和杂种优势育种油菜的转基因育种油菜种子内生菌的检测及杀菌消毒处理方法油菜种子特异表达napin基因启动子的克隆及序列分析油菜种子生产体系和方法的研究:I[1].双低油菜原原种不同隔离方法的比较油菜种子生产体系和方法的研究:Ⅱ双低油菜原原种种子来源对原种生长[1]油菜育种与生物技术油菜脂肪酸品质改良的研究进展油菜自交不亲和性杂种优势利用的遗传基础探讨油菜花期性状与经济性状的相关性油菜花药离体培养研究油菜菌核病抗性鉴定抗性机理及抗性遗传育种研究进展油菜角果内的淀粉酶活性与有关同化物转运的调控油菜转基因的遗传研究油菜转基因育种研究油菜转基因育种研究进展油菜远缘杂交的遗传育种研究Ⅵ芥菜型油菜几个基因的染色体组定位研究油菜远缘杂交育种的主要障碍及其克服方法油菜迟播初步研究摘要油菜遗传育种研究进展油菜雄性不育分子机理的研究进展油菜雄性不育性的研究:I[1].甘蓝型油菜波里马(Polima)细胞油菜雄性不育系与十字花科蔬菜远缘杂交亲和性研究油菜高效转化系统的研究油菜高油酸遗传育种研究进展湖南发展油菜生产的措施湘农油571生长发育及产量形成与播种期关系的模拟分析湘南地区油菜播种期研究湘南地区油菜生长发育特点和适宜品种的研究湘南地区油菜适宜播种期的研究湘油13号高产栽培综合农艺措施优化分析湘西地区油菜播种期研究烟叶自然陈化过程中高级脂肪酸及有关生化特性动态变化的研究烟叶香气前体物在成熟和调制过程中的变化烟草腺毛分泌物的化学成分及遗传现代生物技术与大麦遗传育种甘蓝型冬油菜Brassica napus干物质积累分配与转移的特性研究甘蓝型油菜FAD2基因cDNA片段的克隆和序列分析甘蓝型油菜fad2基因片段的克隆和反义表达载体的构建甘蓝型油菜pep基因片段的克隆和种子特异性反义表达载体的构建甘蓝型油菜与芥菜型油菜种间杂交研究甘蓝型油菜与芥菜型油菜种间杂交研究摘要甘蓝型油菜与芸芥属间杂种F-1的获得及鉴定甘蓝型油菜品系一些酶的活性与抗菌核病的关系甘蓝型油菜显性无蜡粉基因的染色体组定位甘蓝型油菜杂种优势与配合力及通径分析甘蓝型油菜细胞质雄性不育系681A选育研究生物柴油开发研究进展与产业化发展策略科技与教育是农业可持续发展的两个重要问题稻田三熟制油菜简化栽培技术研究I 不同播种量对稻板茬撒播油菜生长发育和产量的影响稻田三熟制油菜简化栽培技术研究Ⅱ 稻板田撒播油菜的播期品种播种量和播种方式稻白叶枯病菌对水稻悬浮细胞H2O2含量及其代谢酶活性的影响篦齿眼子菜沼生水马齿对汞的耐受性与浓缩性研究精密排种器的特征造型及其装配关联设计红光和蓝光对烟叶生长碳氮代谢和品质的影响红麻分子标记的应用研究进展美国油菜生产情况芥菜型油菜Brassica juncea感光性初步研究芥菜型油菜与甘蓝型油菜种间杂种二代分离观察芥菜型油菜与甘蓝型油菜种间杂种后代的RAPD分析芸芥Eruca sativa Mill与芸薹属Brassica L3个油用种的远芸芥Eruca sativa Mill对菌核病的抗性研究芸芥抗菌核病相关基因的分子标记芸薹属作物的遗传转化芸薹属植物抗菌核病的研究进展菜籽蛋白对超滤膜污染机理及在线反冲工艺研究谈谈植被保护与植物栽培谷粒饱对油菜品质和产量的影响转Bt基因抗虫油菜花粉对蜜蜂生存的影响转基因抗虫油菜中Bt杀虫蛋白基因稳定遗传和高效表达及抗虫性研究转基因抗虫油菜品系选育和性状研究转基因抗虫油菜对菜青虫抗性的研究转基因抗虫油菜的ELISA分析转基因抗虫油菜的生物学特性研究转基因植物的应用研究及基因产品的安全性转基因油菜应用研究转基因油菜雄性不育系15A生化特性研究转基因油菜雄性不育系15A结实性的研究辽西半干旱区农田水肥耦合作用对春小麦产量的影响过氧化氢水杨酸与植物抗病性关系的研究进展适应现代农业需要 培养高素质植物生产类人才野芥Sinapis arvensis L在中国的发现及意义高光谱技术在农业上的应用(综述)高等农业院校农学专业人本科才培养方案及教学内容和课程体系改革的研究“杀雄剂1号”诱导油菜雄性不育的效果及其机理的初步研究“湘农油2号”油菜的选育冬油菜稻板田免耕移栽的研究印度油菜的育成品种介绍春大豆花芽分化的初步研究油菜不育胞质对杂种一代的影响油菜主要性状遗传力和遗传相关油菜产品的加工利用油菜产品综合利用的研究Ⅰ油菜产品综合利用的研究Ⅱ油菜化学杀雄药物、机理和杂种研究油菜品质育种的研究Ⅰ油菜品质育种的研究Ⅱ油菜增产的几个问题油菜杂种在生长性状上的优势表现油菜染色体的数目、形态和行为油菜生态特性的研究Ⅰ.甘蓝型油菜()光温生态特性的初步研究油菜生态特性的研究Ⅱ.不同类型甘蓝型油菜( L.)异地异季种植的生态特性研究油菜生态特性的研究Ⅲ.油菜()低温敏感期的研究油菜的几个生理障碍及对策油菜的营养特性和施肥技术油菜种子生产体系和方法的研究油菜花芽分化的研究湖南地区油菜生长发育特点和适宜品种的研究湘油11号高产栽培措施的数学模型研究甘蓝型油菜()的不同杂种组合的优势比较甘蓝型油菜不同杂种组合的优势比较甘蓝型油菜产量形成的初步分析甘蓝性油菜雄性不育系“湘矮A”及其杂种的初步观察甘蓝型油菜单双低品系数量性状的遗传分析积极行动起来 为我省农业发展做出新贡献论油菜“冬发”
欧比诺橱柜
食品加工质量安全管理工作是保障企业产品质量安全符合质量标准的关键、是维护企业市场信誉的关键,是企业在现代激烈市场竞争中赢得市场竞争力的关键。下面是我为大家推荐的食品加工论文,供大家参考。
食品加工论文 范文 一:食品工业泡沫分离技术的应用
泡沫分离又称泡沫吸附分离技术,是以气泡为介质,以各组分之间的表面活性差为依据,从而达到分离或浓缩目的的一种分离 方法 [1].20世纪初,泡沫分离技术最早应用于矿物浮选,后来应用于回收工业废水中的表面活性剂.直到20世纪70年代,人们开始将泡沫分离技术应用于蛋白质与酶的分离提取[2-3].目前,在食品工业中,泡沫分离技术已经应用于蛋白质与酶、糖及皂苷类有效成分的分离提取.由于大部分食品料液都有起泡性,泡沫分离技术在食品工业中的应用将越来越广泛.
1泡沫分离技术的原理及特点
泡沫分离技术的原理
泡沫分离技术是依据表面吸附原理,基于液相中溶质或颗粒之间的表面活性差异性.表面活性强的物质先吸附于分散相与连续相的界面处,通过鼓泡形成泡沫层,使泡沫层与液相主体分离,表面活性物质集中在泡沫层内,从而达到浓缩溶质或净化液相主体的目的.
泡沫分离技术的特点
优点
(1)与传统分离稀浓度产品的方法相比,泡沫分离技术设备简单、易于操作,更加适合于稀浓度产品的分离.(2)泡沫分离技术分辨率高,对于组分之间表面活性差异大的物质,采用泡沫分离技术分离可以得到较高的富集比.(3)泡沫分离技术无需大量有机溶剂洗脱液和提取液,成本低、环境污染小,利于工业化生产.
缺点
表面活性物质大多数是高分子化合物,消化量比较大,同时比较难回收.此外,溶液中的表面活性物质浓度不易控制,泡沫塔内的返混现象会影响到分离效果[4].
2泡沫分离技术在食品工业中的应用
蛋白质的分离
在分离蛋白质的过程中,表面活性差异小的蛋白质,吸附效果受到气-液界面吸附结构的影响,因此蛋白质表面活性的强度是考察泡沫分离效果的主要指标.谭相伟等[5]研究了牛血清蛋白与酪蛋白在气-液界面的吸附,并发现酪蛋白对牛血清蛋白在气-液界面处的吸附有显著影响.此后,Hossain等[6]利用泡沫分离技术对β-乳球蛋白和牛血清蛋白进行分离富集,结果得到96%β-乳球蛋白和83%牛血清蛋白.Brown等[7]采用连续式泡沫分离技术从混合液中分离牛血清蛋白与酪蛋白,结果表明酪蛋白的回收率很高,而大部分的牛血清蛋白留在了溶液中.Saleh等[8]研究了利用泡沫分离法从乳铁传递蛋白、牛血清蛋白和α-乳白蛋白3种蛋白混合液中分离出乳铁传递蛋白,在牛血清蛋白和α-乳白蛋白的混合液中加入不同浓度的乳铁传递蛋白,并不断改变气速,优化了最佳工艺条件.结果得出:在最佳工艺条件下,87%的乳铁传递蛋白留在溶液中,98%牛血清蛋白和91%α-乳白蛋白存在于泡沫夹带液中.由此可见,利用泡沫分离法可以有效地从3种蛋白质混合液中分离出乳铁传递蛋白.Chen等[9]利用泡沫分离技术从牛奶中提取免疫球蛋白.考察了初始pH值、初始免疫球蛋白浓度、氮流量、柱的高度及发泡时间等因素对反应的影响,结果表明:采用泡沫分离方法可以有效地从牛奶中分离出免疫球蛋白.Liu等[10]从工业大豆废水浓缩富集大豆蛋白,最佳工艺条件:温度为50℃,pH值为,空气流量为100mL?min-1,装载液体高度为400mm,得到大豆蛋白富集比为等[11]为了提高泡沫析水性,研发了一种新型的利用铁丝网进行整装填料的泡沫分离塔,利用铁丝网整体填料塔泡沫分离法对牛血清蛋白进行分离.通过研究填料对气泡大小、持液量、富集比和在不同条件下以牛血清蛋白水溶液作为一个参考物的有效收集率的影响,评价填料的作用.结果表明,填料可以加速气泡破裂、减少持液量、提高泡沫析水性和牛血清蛋白的富集比.研究表明,在积液量为490mL,空气流速为300mL?min-1,牛血清蛋白初始浓度为,填料床高度为300mm和初始pH值为的条件下,最佳的牛血清蛋白富集比为,是控制塔条件下富集比的倍.刘海彬等[12]以桑叶为原料,采用泡沫分离法对桑叶蛋白进行分离,并分析了影响分离效果的主要因素,结果测得桑叶蛋白回收率为、富集比为.由此可见,利用泡沫分离法对桑叶进行分离可得到含量较高的桑叶蛋白.与传统的叶蛋白分离方法如酸(碱)热法、有机溶剂法相比较[13-14],泡沫分离法分离效果好,避免了加热导致蛋白质变性以及减少有机溶剂带来的环境污染等问题.李轩领等[15]以亚麻蛋白浓度、NaCl浓度、原料液pH值以及装液量为主要考察因素,用响应面法优化了从未脱胶亚麻籽饼粕中泡沫分离亚麻蛋白的工艺条件.在最佳工艺条件下,得到的亚麻蛋白质,而多糖的损失率仅为.可见,采用泡沫分离技术可以从未脱胶亚麻籽饼粕中有效分离出亚麻蛋白.
酶的分离
蛋白质属于生物表面活性剂,包含极性和非极性基团,在溶液中可选择性地吸附于气-液界面.因此,从低浓度溶液中可泡沫分离出酶和蛋白质等物质.Linke等[16]研究了从发酵液中泡沫分离胞外脂肪酶,考察了通气时间、pH值及气速等主要因素对回收率的影响,研究得出通气时间为50min、pH值为及气速为60mL/min时,酶蛋白回收率为95%.Mohan等[17]从啤酒中泡沫分离回收酵母和麦芽等,结果表明,分离酵母和麦芽所需的时间不同,而且低浓度时更加容易富集.Holmstr[18]从低浓度溶液中泡沫分离出淀粉酶,研究发现在等电点处鼓泡,泡沫夹带液中的淀粉酶活性是原溶液中的4倍.Lambert等[19]采用泡沫分离技术考察了β-葡糖苷酶的pH值与表面张力之间的关系,研究表明,纤维素二糖酶和纤维素酶的最佳起泡pH值分别为和6~等[7]利用泡沫分离技术对牛血清蛋白与溶菌酶以及酪蛋白与溶菌酶的混合体系分别进行了分离纯化的研究.结果表明,溶菌酶不管与牛血清蛋白混合还是与酪蛋白混合,回收率都很低,但是由于溶菌酶可提高泡沫的稳定性,从而提高了牛血清蛋白与溶菌酶的回收率.Samita等[20]对牛血清蛋白与酪蛋白、牛血清蛋白与溶菌酶两种二元体系分别进行了研究,发现在牛血清蛋白与酪蛋白的蛋白质二元体系中酪蛋白在气-液界面处的吸附占了大部分的气-液界面,从而阻止了牛血清蛋白在气-液界面处的吸附.而在牛血清蛋白与溶菌酶的二元体系中,研究表明溶菌酶提高了牛血清蛋白的回收率,同时提高了泡沫的稳定性.针对这种现象,Noble等[21]也采用泡沫分离法分离牛血清蛋白与溶菌酶的二元体系,研究发现泡沫夹带液中存在少量的溶菌酶,提高了泡沫的稳定性,牛血清蛋白溶液在低浓度下本来不能产生稳定泡沫,溶菌酶的存在使得其也能产生稳定的泡沫.这些研究表明,泡沫分离技术可以在较低的浓度下分离具有表面活性的蛋白质,为泡沫分离技术在蛋白质分离中的应用研究开辟了新的领域.国内泡沫分离技术已应用在酶类物质分离中,范明等[22]设计了泡沫分离装置,利用泡沫分离技术分离脂肪酶模拟液和实际生产生物柴油的水相脂肪酶溶液,对水相脂肪酶进行回收并富集.考察了通气速度、进料酶浓度及水相脂肪酶溶液中pH值等主要因素对分离效果的影响,当通气速度为10L/(LH)、进料酶浓度为、pH值为时,蛋白和酶活回收率接近于100%,富集比为.研究表明,初始脂肪酶浓度对泡沫分离的富集比和蛋白回收率有显著影响,pH值对富集比、蛋白和酶活回收率无显著影响,而气速是影响蛋白回收速率的一个重要因素.回收水相脂肪酶的过程中酶活性无损失.可见,泡沫分离是一个回收液体脂肪酶的有效方法[22].
糖的分离
糖一般存在于植物和微生物体内,可根据糖与蛋白质或者其他物质的表面活性差异性,利用泡沫分离技术对糖进行分离提取[23].Fu等[24]采用离心法从基隆产的甘薯块中分离提取可溶性糖和蛋白,得到的回收率分别为和;而采用泡沫分离法时,可溶性糖和蛋白的回收率分别为和等[25]采用泡沫分离法富集假单胞菌生产的鼠李糖脂,最佳工艺条件下得到鼠李糖脂97%,富集比为洲[26]利用间歇式泡沫分离法从美味牛肝菌水提物中分离牛肝菌多糖,考察了pH值、原料液浓度、空气流速、表面活性剂用量及浮选时间等主要因素对分离效果的影响,以回收率为指标评价分离的效果,并优化了分离牛肝菌多糖的工艺条件.在最佳工艺条件下,牛肝菌多糖回收率为.国内关于食用菌多糖的提取一般利用水提醇析法,但是该法需要消耗大量的乙醇,操作周期长,能耗大[27-28],而泡沫分离法具有快速分离、设备简单、操作连续、不需高温高压及适合分离低浓度组分等优势,因此间歇式泡沫分离法是提取食用菌多糖的一种有效方法.
皂苷类有效成分的分离
皂苷包含亲水性的糖体和疏水性的皂苷元,具有良好的起泡性,是一种优良的天然非离子型表面活性成分,因此可采用泡沫分离法从天然植物中分离皂苷[29].泡沫分离法已广泛用于大豆异黄酮苷元、人参皂苷、无患子皂苷、竹节参皂苷、文冠果果皮皂苷等有效成分的分离.
大豆异黄酮苷元的分离Liu等[10]
采用泡沫分离与酸解方法从大豆乳清废水中分离大豆异黄酮苷元,指出从工业大豆乳清废水中提取的异黄酮苷元主要以β-苷元的形式存在,并利用傅里叶变换红外光谱分析发现大豆异黄酮和大豆蛋白以复合物的形式存在.研究结果表明,利用泡沫分离技术可以从大豆乳清废水中有效地富集大豆异黄酮,分离出大豆异黄酮苷元和β-苷元.
无患子总皂苷的分离魏凤玉等[30]
分别采用间歇和连续泡沫分离法分离纯化无患子皂苷,利用正交试验,考察了原始料液浓度、气体流速、温度、pH值等因素对无患子皂苷回收率的影响,确定了泡沫分离最佳工艺条件.林清霞等[31]采用泡沫分离技术分离纯化无患子皂苷,利用紫外分光光度计测定无患子皂苷含量,通过富集比、纯度及回收率判断分离纯化的效果.在进料浓度为、进料量为150mL、气速为32L/h、温度为30℃、pH值为时,得到富集比为,纯度与回收率分别为和.研究结果表明:无患子皂苷的回收率随着进料浓度的增大而减小,随着气速、进料量的增大而增大;富集比随着进料浓度、气速及进料量的增大而减小,pH值对富集比的影响较小;纯度随着进料浓度、气速的增大而降低,进料量、pH值对纯度的影响较小.
竹节参总皂苷的分离
竹节参的主要成分皂苷是一种优良的天然表面活性剂,而竹节参中的竹节参多糖、无机盐及氨基酸等是非表面活性剂,因此可根据表面活性的差异,采用泡沫分离技术对竹节参皂苷进行分离纯化[32-34].张海滨等[35]考察了气泡大小、pH值、原料液温度及电解质物质的量浓度等主要因素对泡沫分离竹节参总皂苷的影响,以富集比、纯度比及回收率等为指标分析分离纯化的效果,得出最佳工艺条件:气泡直径为,pH值为,温度为65℃,电解质NaCl浓度为.在最佳工艺条件下,总皂苷富集比为,纯度比为,回收率为,能够得到较好的分离.张长城等[36]研究了利用泡沫分离技术对竹节参中皂苷进行分离纯化的方法与条件,指出泡沫分离技术分离纯化竹节参皂苷具有产品回收率高、工艺简单、能耗低及不使用有机溶剂等优点,为竹节参皂苷的开发利用提供了技术支持.
文冠果果皮皂苷的分离
文冠果籽油是优质的食用油,含油率达35%~40%[37],同时可作为生物柴油的原料.文冠果果皮含有皂苷~.研究表明,文冠果果皮皂苷具有抗肿瘤、抗氧化及抗疲劳等功效[38].文冠果果皮皂苷的开发利用带来的附加价值可以有效地降低生物柴油的生产成本.在生产生物柴油的过程中需要处理大量的果皮,因此需要寻求一种简单可行、成本低、收率高以及对环境污染小的皂苷分离方法.吴伟杰等[39]使用自制起泡装置,研究了泡沫分离技术分离文冠果果皮总皂苷的可行性及最佳反应条件.研究得出泡沫分离文冠果皂苷的最佳工艺条件为:料液气体流速为,初始浓度为2mg?mL-1,温度为20℃,pH值为5.与泡沫分离人参、三七等皂苷的气体流速相比较,文冠果果皮的气体流速较低,这样可以更大限度地降低能耗、节约成本.同时,泡沫分离文冠果果皮皂苷可在室温条件下进行,降低了加热所需的能耗.此外,由于文冠果果皮皂苷的水溶液pH值在5左右,泡沫分离时无需调节pH值.在最佳工艺条件下,得到富集比为,回收率为,纯度为.研究表明,泡沫分离文冠果果皮皂苷可以达到较高的富集比、回收率和纯度,对于大力开发利用生物能源、综合利用文冠果以及降低生物柴油的成本有着重要意义.
3展望
泡沫分离技术是一种很有发展前景的新型分离技术,在食品工业中的应用将会越来越广泛,今后在天然产物及稀有物质的分离提取等方面有着更加广泛的应用.同时,泡沫分离技术也存在一定的局限性,为促进泡沫分离技术在食品工业中的应用发展,应该在以下方面进行深入研究:(1)对泡沫分离复杂物料实际分离过程的泡沫形成情况建立理论模型,对标准表面活性剂的分离提取建立标准数据库,对标准表面活性剂和非表面活性物质间的分离建立指纹图谱;(2)如何减少泡沫分离非表面活性物质时的表面活性剂消耗量;(3)如何解决泡沫分离高浓度产品时回收率低的问题;(4)目前泡沫分离设备存在局限性,应研究开发新型的适合食品工业分离的泡沫分离设备,提高泡沫分离的效果[40].
食品加工论文范文二:食品工业废水处理节能研究
食品工业包括制糖、酿造、肉类、乳品加工等,食品工业的废水主要来源于原料的处理、洗涤、脱水、过滤、脱酸、脱臭和蒸煮过程中产生的,这些废水含有大量的有机物、蛋白质、有机酸和碳水化合物,具有很强的耗氧性,如果不经处理直接排入水体会大量消耗水中的溶解氧,从而造成水体缺氧,造成水生生物的死亡。食品工业废水油脂含量高,多伴随大量悬浮物随废水排出,其中动物性食品加工排出的废水还可能含有病菌,此外,这些废水还含有铜、锰、铬等金属离子。近年来,随着食品加工业的快速发展,每年由此产生的废水量也呈现快速增长态势,许多废水未经有效处理便被直接排放,给环境产生了十分严重的破坏。因此,探讨食品工业废水处理对于生态环境保护具有非常重要的现实意义。
1食品工业废水处理工艺现状
目前,国内外对于食品工业废水的处理过程中主要采用的是生物处理工艺,其中主要包括有好氧生物处理工艺、厌氧生物处理工艺,以及由好氧生物处理工艺与厌氧生物处理工艺相结合的处理工艺。在好氧生物处理工艺方面,主要有活性污泥法(目前实际应用较为广泛的主要有SBR法)和生物膜法(具有代表性的是曝气生物滤池法)。由于厌氧生物处理工艺相较于好氧生物处理工艺无论在后期的运行管理费用还是前期的基建投资方面的费用都有较大优势,其中比较具有典型的处理工艺有厌氧颗粒污泥膨胀床(EGSB)工艺、第三代厌氧处理工艺———厌氧内循环反应器(IC)被广泛应用到了食品工业废水处理中。此外,厌氧生物处理工艺在处理食品工业废水方面具有良好的处理效果[1]。
2各种工艺特点及应用效果分析
目前国内外,食品工业废水的处理以生物处理[2]为主。在实际中运用较广,技术较为成熟的主要有厌氧接触法、厌氧污泥床法、浅层曝气、延时曝气、曝气沉淀池法等等。
好氧生物处理工艺
好氧生物处理是在不断供氧的环境中,利用好氧微生物来氧化有机物。在好氧过程中,微生物对复杂的有机物进行分解,一部分被转化为稳定的无机物CO2、H2O和NH3,一部分则由微生物合成为新细胞,最后去除污水中的有机物。
法,即间歇式活性污泥系统(又叫序批式间歇活性污泥法)。SBR法目前在国内外应用较为广泛,生物反应池中集中了生物降解过程、沉淀过程以及污泥回流功能为一体,这种工艺比较简单,它是在以前间歇式活性污泥工艺基础上发展来的一种新工艺,采用SBR法处理废水的运行过程一般包括了进水、充氧曝气、静止沉淀、排水和排泥五个步骤。与连续性活性污泥工艺相比,该工艺具有的有点主要有:曝气池兼具二沉池的功能,不设二沉池,也没有污泥回流设备,系统结构简单,易于管理;耐冲击负荷,一般无需设置调节池;反应推动力大,较为简便的得到优质出水水质;污泥沉淀性能好,SVI值较低,便于自控运行,后期维护管理也较为简便。居华[3]通过SBR法在酱油、酱菜食品废水处理中的应用研究后得出,原废水CODcr在2000mg/L~4000mg/L范围内,经SBR法处理后出水水质得到了二级标准,去除率达96%以上,没有出现污泥膨胀现象,而且操作管理方便,占地面积小,运行的费用也低。
法,即曝气生物滤池法。这种工艺最早可以追溯上个世纪80年代,是由欧美等国家应用和发展起来的,大连马栏河污水处理厂是我国最早采用BAF工艺。该工艺是在生物接触工艺基础上,在滤池中填装陶粒、石英砂等粒状填料,以填料及其附着生产生物膜为介质,发挥生物的代谢功能,通过物理过滤功能,发挥膜和填料的截留吸附作用从而实现污染物的高效处理。廖艳[4]等采用混凝—ABR与曝气生物滤池(BAF)联合处理工艺,对某市肉联厂高浓度废水化学需氧量和氨氮的去除研究后发现,化学需氧量和氨氮的去除效果从原水时的1500mg/L~4500mg/L、30mg/L~85mg/L,经处理后出水COD<100mg/L,氨氮<50mg/L,达到了国家一、二级排放标准,取得良好的环境和社会效益。
法,即膜生物反应器法。是上个世纪90年代逐渐发展起来的一种废水处理技术,该工艺是将膜组件替代传统的二沉池,实现固相和液相分离。其实质是把细菌和微生物以生物膜的方式附着在固体表面上,以污水中的有机物为营养物进行新陈代谢和生长繁殖,从而达到实现净化污水的效果。该工艺具有较强的抗冲击力,对水质和水量变化具有较强适应性;污泥产量较低且沉降性能优,易于固液分离;对于低浓度污水也可以进行处理,在正常运行时可以把原水中的BOD5由20mg/L~30mg/L降至5mg/L~10mg/L;运行费用也不高,管理方便。张亮平,王峰[5]以MBR在湖北某食品厂废水处理中的应用为例进行研究后发现,采用MBR-活性炭-杀菌联合工艺,出水COD和BOD的去除率达到了99%以上,系统工艺能耗低,运行稳定。
厌氧生物处理工艺
在食品废水处理过程中,厌氧处理法与好氧处理法相比由于产生的污泥少,动力流耗小,管理简便,既能节能又能降低成本,逐渐在高浓度有机废水行业———食品工业广泛推崇。
法,即升流式厌氧污泥床法。该种工艺是由高活性厌氧菌体构成的粒状污泥,在UASB装置内随上升的气流呈向上流动的状态。处理效率高、性能可靠、能耗低,也不需要填料和载体,运行成本低等优点,既可以处理高负荷废水,也不会产生堵塞等优点。也是当前应用最为广泛的高速反应器之一。王炜,何好启[6]研究发现,食品废水经由UASB+接触氧化法工艺处置后,CODcr、BOD5、SS和植物油由原水浓度的1170mg/L、570mg/L、600mg/L、150mg/L,处置后的效果为、、40mg/L和3mg/L,出水水质达到了《污水综合排放标准》中的一级标准,且工程的经济运行效益也良好,总运行费用约为元/m3,工艺占地小,处理成本低,运行方式灵活,值得推广。
反应器,即膨胀颗粒污泥床反应器。该工艺是在UASB基础上发展起来的一种新厌氧工艺,与UASB工艺相比,EGSB增加了出水的回流,提升了反应器中水流的速度,其速度可以达到5m/h~10m/h,比UASB的~高出近10倍。李克勋[7]等以天津某淀粉厂采用EGSB处理淀粉废水为例,EGSB的厌氧反应器对COD的去除率超过了85%,出水水质达到了国家一级排放标准,大量有机物被去除,后续单元的处理压力被减轻,此外,厌氧反应器的介入使用,可以产生沼气作为能源进行二次利用,降低运行费用(总运转费用为元/m3?d),具有良好的环境效益和社会效益。
法,即厌氧序批式活性污泥法。ASBR厌氧序批式活性污泥法最早诞生于上世纪90年代的美国,是在SBR基础上发展起来的,该工艺的显著特点是以序批间歇运行,按次序分为进水、反应、沉淀和排水四个步骤,与连续流厌氧反应器相比,该工艺由于不需要大阻力的配水系统,因此极大地减少了系统的能耗,也不会产生断流和短流,运行灵活,抗击能力较强,实现厌氧功能,也同时兼有了SBR的优点。
3厌氧生物处理工艺优势分析
与好氧生物处理工艺相比,在食品工业废水处理方面,厌氧生物处理工艺具有很多优势:工艺运行时污泥的剩余量非常少,由于不需要附加氧源而降低运行管理费用;食品工业废水有机物浓度高,而厌氧生物处理工艺拥有良好的抗高浓度有机物的冲击负荷力优势,能够做到间接性排放;另外,厌氧生物处理工艺能够产生沼气,实现资源的二次利用,真正实现了 变废为宝 ,降低能耗,因此,厌氧处理工艺在食品工业废水处理中是一种节能型废水处理工艺。作为低能耗而且能够产生二次能源的厌氧生物处理工艺必将成为食品工业废水处理的主流方向[8]。
在高浓度淀粉保护下α-淀粉酶的耐热性很强,在适量的钙盐和食盐存在下,pH值为5.3~7.0时,温度提高到93~95℃仍能保持足够高的活性。为便于保存,常加入适量
简单讲:淀粉(c6h12o6)n属于多糖类,它遇到碘元素的时候,会发生反应,生成的化合物显蓝色,所以我们会看到上述的现象。详细讲:淀粉是一种高分子化合物。淀粉与
它的合成方式主要是结合了化学以及生物。科研人员采用“搭积木” 的方式,通过“光能-电能-化学能”的能量转变,构建了11步反应的非自然固碳与淀粉合成途径,在实验室
2005年7月任教于南阳师院生命科学与技术学院以来,主持南阳师院科研项目和南阳市科技攻关计划各1项,公开发表论文5篇。1. 田龙.小米黄色素的部分理化特性研究.
面对当前食品行业的激烈竞争,精美的食品的包装是取胜的一大法宝。下面是我带来的关于食品包装 毕业 论文的内容,欢迎阅读参考!食品包装毕业论文篇1:《浅谈食品包
优质学术期刊投稿问答知识库