闹闹美食家
(报告出品方/分析师: 兴业证券 蔡屹 石康 李春驰 史一粟)
核电原理概述:裂变链式反应产生能量,产生蒸汽推动汽轮机组发电
核能通过核裂变、核聚变和核衰变等三种核反应从原子核释放能量,其中核裂变链式反应为核能发电原理。
核能发电主要利用质量较大的原子(如铀、钍、钚)的原子核在吸收一个中子后会分裂为多个质量较小原子核、同时放出二至三个中子和巨大能量的特性,而放出的中子和能量会使别的原子核接着发生裂变,使放出能量的过程持续,这样的系列反应被称作核裂变链式反应。核裂变链式反应即为核能发电的能量来源。
核电站使核裂变链式反应产生的能量完成核能-热能-机械能-电能的转变,达到发电的目的。
核电站大体可分为核岛部分(NI)和常规岛部分(CI):
核岛部分:核岛部分包括反应堆装置和一回路系统,主要作用为进行核裂变反应和 产生蒸汽。
核岛反应堆的作用为发生核裂变,将裂变过程中释放的能量转化为水的热能;水在吸收热能后以高温高压的形式沿管道进入蒸汽发生器的 U 型管内,将热量传递给 U 型管外侧的水,使外侧水变为饱和蒸汽;冷却后的水将被主泵打回到反应堆中重新加热,形成一个以水为载 体的闭式吸热放热循环回路,这个回路被称作一回路,又称“蒸汽供应系统”。
常规岛部分:常规岛部分包括汽轮发电机系统和二回路系统,主要作用为利用蒸汽推动汽轮机组发电。
由核岛部分热传递产生的蒸汽会进入常规岛中的汽轮机组中,将蒸汽的热能转变为汽轮机的机械能,再通过汽轮机与发电机相连的转子将机械能转换为电能,完成发电过程。
同时做功完毕的蒸汽(乏汽)被排入冷凝器,由循环冷却水进行冷却,凝结成水,之后由凝 结水泵送入加热器进行预加热,最后由给水泵输入蒸汽发生器,形成又一个以水为载体的封闭循环系统,这个回路被称作“二回路”。
从原理上看,二回路系统与常规火电厂蒸汽动力回路大致相同。
核电商业模式:重资产模式+运营期现金牛
核电商业模式呈现重资产模式+运营期现金牛的特点:
建设期:工期长,投资额大
核电站因存在普遍拖期现象,实际建设周期约在5-10年。核电站的设计工期通常为 5 年,而因缺乏施工经验、设计变更、耗时检测等原因,我国核电机组普遍存在首堆拖期问题,导致建设期利息费用增长、发电成本提高。
批量化生产有利于核电机组建设周期缩短、成本下降,实现批量化建设之后,M310/CPR等同机型系列建设周期可逐渐稳定在 5 年左右。
我国三代核电单千瓦投资额在15000元左右。
在AP1000基础上自主研发的三代核电技术CAP1000的建设成本为14000元/kW,同属三代核电技术的“华龙一号”建设成本达17390元/kW。据此计算,一台百万千瓦级的核电机组对应投资额约为150亿元,呈现投资额大的特点。
运营期:稳健现金牛
核电行业与水电行业类似,都具有运营期稳定现金牛的特征。
核电站遵循营业收入=电价*上网电量=电价*装机容量*利用小时数*(1-厂电率)的拆分简 式,营业收入可确定性强,同时由于项目前期建设投入高昂、固定资产折旧成本较高(占主营业务成本的30-40%),所以核电站成本中非付现成本(折旧)占比较高。
因此核电站一旦进入运营期,将呈现获得稳健而充裕的经营性净现金流的特性。
低碳高效的基荷电源,“双碳”目标下重要性凸显
核电具有低碳高效的特点,我国核电占比明显低于全球水平。
相比于其他发电方式,核电利用小时数高、度电成本较低,具有低碳、稳定、高效的特点,适合作为优质基荷电源发展。
而从电源结构上看,2020年我国核电占比仅为 ,不仅低于核能利用大国法国的 ,也显著低于全球平均水平的 ,我国核电占比仍有较大的提升空间。
“双碳”目标下非化石能源占比提升,核能重要性凸显。
在2020年12月的气候雄心峰会上:到2030年单位GDP的二氧化碳排放比2005年下降65%以上,非化石能源占一次能源比例达到 25%左右。
2021年10月24日,《中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作意见》中提出要“积极发展非化石能源”、“实施可再生能源替代行动”、“不断提高非化 石能源消费比重”、“积极安全有序发展核电”。
2021年10月26日,国务院正式发布《2030年前碳达峰行动方案》,其中指出“积极安全有序发展核电。
合理确定核电站布局和开发时序,在确保安全的前提下有序发展核电,保持平稳建设节奏。
积极推动高温气冷堆、快堆、模块化小型堆、海上浮动堆等先进堆型示范工程,开展核能综合利用示范。
加大核电标准化、自主化力度,加快关键技术装备攻关,培育高端核电装备制造产业集群。
实行最严格的安全标准和最严格的监管,持续提升核安全监管能力。”对比我国近10年来的能源结构变化,非化石能源占比自2011年的提升至2020年的;从电源结构上看,据中电联数据核电占比已从2011年的提高至2021年的,核能重要性正在凸显。
核电技术演进:经济性与安全性推动核电技术发展
经济性与安全性是推动核电发展的核心目标。
核电站的开发始于上世纪50年代, 70年代石油涨价引发的能源危机促进了核电的发展,目前世界上商业运行的四百多座核电机组绝大部分是在这段时期建成的。
上世纪90年代,为解决三里岛和切尔诺贝利核电站的严重事故的负面影响,美国和欧洲先后出台“先进轻水堆用户要求”文件和“欧洲用户对轻水堆核电站的要求”,满足两份文件之一的核电机组称为第三代核电机组。
21 世纪初,第四代核能系统国际论坛(GIF)会议提出将钠冷快堆、铅冷快堆、气冷快堆、超临界水冷堆、超高温气冷堆、熔盐堆 6 种堆型确认为第四代核电站重点研发对象。四代核电技术强化了防止核扩散等方面的要求,目前相关产业链雏形基本形成,预计将于2030年开启商业化进程。
2019年核电审批重启,三代机组成为主力机型
2016-2018年我国核电连续三年“零审批”,核电发展处于停滞期。
2011年日本福岛核电站受地震引发的海啸冲击,出现严重核泄漏事故,世界各国开始谨慎对待新增核电站建设,我国核电站审批工作也受此影响放缓。
2015年,我国批准 8 台核电机组,之后2016-2018年进入停滞状态,连续三年“零审批”。
2019年核电审批重启,三代核电机组正成为主力机型。
2018年后我国多台三代核电机组投入商运,三代机组的安全性和可靠性得到印证;此外2018 年1月28日,我国自主研发的三代核电机组“华龙一号”首堆、中核集团福清核电 5 号机组反应堆压力容器顺利吊装入堆,建设工程进展顺利。受此影响,我国核电审批工作重新提上议程。
2019年 7 月,国家能源局表态山东荣成、福建漳州和广东太平岭核电项目核准开工,标志着核电审批正式重启。
2020年,海南昌江核电二期工程、浙江三澳核电一期工程总计 4 台机组获批;
2021年,江苏田湾核电厂7&8号机组、辽宁徐大堡核电厂3&4号机组和海南昌江多用途模块式小型堆 科技 示范工程项目共计5台机组获批,我国核电机组批复进度正有序进行。
而从2019年后核电机组开工情况来看,以“华龙一号”和“VVER”为代表的三代核电机组已成主力机型。
自主三代核电有望按照每年 6-8 台机组的核准节奏稳步推进,“积极发展”政策正逐步兑现。2021年 3 月,《政府工作报告》中提到“在确保安全的前提下积极有序发展核电”,这是近10 年来首次使用“积极”来对核电进行政策表述。
据中国核能行业协会《中国核能发展与展望(2021)》,我国自主三代核电有望按照每年6-8台机组的核准节奏稳步推进,2021年全年核准、开工各 5 台,积极有序发展政策正逐步兑现。
四代核电技术快速发展,有望带领核电产业迈入新纪元
四代核电有望带领核电产业迈入新纪元。
近年来,我国在“863”、“973”、核能开发、重大专项计划以及第四代核能系统国际合作框架的支持下,先后开展了高温气冷堆、钠冷快堆、超临界水冷堆、铅冷快堆和熔盐堆五种堆型的研究开发,取得了一系列研究成果,与国际水平基本同步。其中,我国高温气冷堆、钠冷快堆研发进度居于世界前列。
高温气冷堆利用其高温特性,在工艺供热、核能制氢、高效发电等工业领域拓展核能的应用前景;快堆则是当今唯一可实现燃料增殖的关键堆型,将明显提高铀资源的利用率,并能够利用嬗变以实现废物最小化。
我国在高温气冷堆、钠冷快堆上的研发进度居于世界前列。
高温气冷堆全球首堆华能石岛湾高温气冷堆已于2021年12月20日成功并网发电,并计划于山东海阳辛安核电项目建设 2 台高温气冷堆。
钠冷快堆方面,中核霞浦600MW示范快堆工程已于2017年底实现土建开工,计划于2023年建成投产。
高温气冷堆: 具有固有安全性和潜在经济竞争力的先进堆型。
固有安全性: 即在严重事故下,包括丧失所有冷却能力时,核电站可不采取任何人为和机器的干预,仅依靠材料本身的能力保证反应堆放射性不会熔毁与大量外泄。
具体表现为:
①防止功率失控增长。
以我国石岛湾示范工程为例,其采用不停堆的连续在线装卸燃料方式,形成流动的球床堆芯;且示范堆采用石墨作为慢化剂,堆芯结构材料不含金属,稳定性高,堆芯热容量大、功率密度低。
②载出剩余余热。
高温气冷堆采用氦气作为一回路冷却剂,具有良好的导热性能。在主传导系统失效的情况下,堆芯余热可借助热传导等自然机理导出,再通过非能动余热排出系统排出,剩余发热不足以使堆芯发生熔毁。
③放射性物质的包容。
示范堆采用全陶瓷包覆颗粒燃料元件,以四层屏蔽材料对燃料核心进行包裹,只要环境温度不超过1650 ,碳化硅球壳就能保持完整,固锁放射性裂变产物。经测试,示范堆正常运行温度最高达1620 ,放射性达到了国际最好水平。
潜在经济竞争力: 同样以石岛湾示范工程为例,通过①装备高度自主化(示范工程国产化率达 )、②“多合为一”降低成本支出(在保持主体系统不变的情况下,进行双模块组合,即核岛由两座球床反应堆模块、两台蒸汽发生器带动一台汽轮机发电。
这类模块化建造缩短了工期,大幅减少施工量,提高了经济性)来控制造价。
同时若对比建设成本,尽管高温气冷堆(HTR-PM)在反应堆本体(主要是 PRV 和堆内构件)的造价远超同等规模的压水堆(PWR)核电站,但根据张作义等人的相关文献研究,在一个 PWR 核电站的建设总造价中,反应堆本体(PRV 和堆内构件)的造价所占的比例非常有限,大约为 2%,所以影响较小。
对比等规模 PWR 核电站,在其他部分造价保持不变的情况下,即使 HTR-PM 示范电站反 应堆本体的造价增加为原来的 10 倍,全站建设总造价的增涨也可以控制在 20% 以内。
钠冷快堆: 固有安全性外,具备核燃料增殖提高利用率、核废料最小化等优势的先进堆型。
提高核燃料利用率: 快堆技术利用铀-钚混合氧化物(Mixed Oxide,MOX)。在快堆中,堆心燃料区为易裂变的钚 239,燃料区的外围再生区里放置着铀 238。
钚 239 产生核裂变反应时放出来的快中子较多,这些快中子除了维持钚 239 自身的链式裂变反应外,还会被外围再生区的铀 238 吸收。
铀 238 吸收快中子后变成铀 239,而铀 239 很不稳定,经过两次β衰变后又一次变成了钚 239。
因此在快堆运行时,新产生的易裂变核燃料多于消耗掉的核燃料,燃料越烧越多,此便称为增殖反应。
增殖反应充分利用了铀资源,且核废料导致的环境污染问题将有希望解决,从而使第四代核电成为拥有优越安全性和经济性,废物量极少,无需厂外应急,并具有防核扩散能力的核能利用系统。
新型核电技术下,核能综合应用成为可能
据中国科学院院刊《核能综合利用研究现状与展望》,从能源效率的观点来看,直接使用热能是更为理想的一种方式,发电只是核能利用的一种形式。
随着技术的发展,尤其是第四代核能系统技术的逐渐成熟和应用,核能有望超脱出仅仅提供 电力的角色,通过非电应用如核能制氢、高温工艺热、核能供暖、海水淡化等各种综合利用形式,在确保全球能源和水安全的可持续性发展方面发挥巨大的作用。
核能制氢: 核能制氢即利用核反应堆产生的热作为一次能源,从含氢元素的物质水或化石燃 料制备氢气。目前研发的主流核能制氢技术包括热化学碘硫循环、混合硫循环和高温蒸汽电解,实现了核能到氢能的高效转化,有效减少热电转换过程中的效率损失。由于高温气冷堆(出口温度 700 950 )和超高温气冷堆(出口温度 950 以上)具有固有安全性、高出口温度、功率适宜等特点,是目前最理想的高温电解制氢的核反应堆:
1) 高温陶瓷包覆燃料具有高安全性。
2) 与热化学循环过程耦合。在800 下,高温电解的理论制氢效率高于50%,且温度升高会使效率进一步提高。
3) 核热辅助的烃类重整利用高温气冷堆的工艺热代替常规技术中的热源,可部分减少化石燃料的使用,也相应减少了CO2排放。
4) 可与气体透平藕合发电,效率达48%。
当前,中核集团与清华大学、宝武集团等已联合开展核能制氢与氢能冶金结合的前期合作,计划“十四五”期间进行中试验证,“十五五”期间进行高温堆核能制氢—氢冶金的工程示范。
对比不同制氢方式,高温气冷堆制氢具有成本优势。
美国能源部在核氢创新计划下进行了核能制氢经济性评估,得到的氢气成本在美元/kg。此外,IAEA开发了氢经济评估程序,参与国对核能制氢成本进行了情景分析,在不同场景下得到的氢气成本在美元/kg。
核能供暖: 核能供暖即使用核电机组二回路抽取蒸汽作为热源,通过厂内换热首站、厂外供 热企业换热站进行多级换热,最后经市政供热管网将热量传递至最终用户。
从安全性角度来看,在整个供热过程中核电站与供暖用户间有多道回路进行隔离,每个回路间只有热量的传递,而热水也只在小区内封闭循环,与核电厂隔离,较为安全;而从碳排放角度来看,核能作为零碳能源大大优于传统热电厂烧煤供热。
2021年 11 月 15 日,国家能源核能供热商用示范工程二期 450 万平方米项目在山东海阳正式投产;2021年 12 月 3 日,浙江海盐核能供热示范工程(一期)在浙江海盐正式投运。从远期来看核能供暖作为零碳清洁取暖手段,具备复制推广潜力,也有助于我国“双碳”目标的实现。
核电乏燃料需妥善处置,我国已确认闭式循环路线
乏燃料指受过辐射照射、使用过的核燃料,由核电站反应堆产生。
核燃料在反应堆内经中子轰击发生核反应,经一定时间内从堆内卸出。
乏燃料含有的铀含量较低,无法继续维持核反应,但仍含有大量放射性元素,需要妥善处置。
乏燃料处理方式分为“开式核燃料循环”和“闭式核燃料循环”,差异在于“开式”直接将乏燃料冷却包装后送入深地质层进行处置或长期储存,而“闭式”将乏燃料送入后处理厂回收铀、钚等物质后再将废物固化进行深地址层处置。
我国于上世纪 80 年代确立核燃料“闭合循环”路线以提高资源利用率,同时减小放射性废物体积并降低毒性。
卸出乏燃料规模持续增长,首套200吨/年处理设施处于建设周期
卸出乏燃料规模不断增长,供需矛盾日益突出。
国家能源局在2021年7月5日公开的《对十三届全国人大四次会议第2831号建议的答复复文摘要》(索引号:000019705/2021-00408)中表示,一台百万千瓦核电机组每年卸出乏燃料20-25吨;若按中电联披露截至2021年12月我国核电装机5326万千瓦计算,我国将每年产生乏燃料约吨吨。
据《中国核能行业智库丛书(第三卷)》,2020年我国产生1100吨乏燃料,乏燃料累积量已达8300吨,预计到2050年累积量达114500吨。
随着核电规模的不断扩大和持续运营,我国每年卸出乏燃料的规模将持续增长,核电的继续发展势必离不开乏燃料后处理设施的相关配套。
首台套 200 吨/年处理设施正处于建设周期中,紧迫需求下未来具有确定性发展机会。
据江苏神通非公开发行 A 股股票预案介绍,我国在建的首套闭式乏燃料处理设施处理能力仅有 200 吨/年,而开式核燃料循环使用到的堆贮存水池容量已超负荷,这与较为庞大的乏燃料年产生量与累积量形成了鲜明对比。
此外国家发改委、国家能源局早在 2016 年的《能源技术革命创新行动计划(2016-2030 年)》中就明确了要发展乏燃料后处理技术,提出要在 2030 年基本建成我国首座 800 吨大型商用乏燃料后处理厂。
我国核电行业的发展离不开“闭式核燃料循环处理”相关产能的同步推进,市场需求较为紧迫,未来具有确定性发展机会。
受益于核电积极发展的逐步兑现,核电全产业链景气度有望回暖。
核电属于典型重资产行业,运营期可获得优质现金流,利用小时数高、度电成本较低、低碳稳定高效等优势,在碳中和背景下有望迎来发展机遇期。
(1)核电站建设进度不及预期的风险:核电项目建设期长,若因种种原因造成建设工期延长,将导致造价成本大幅上升;
(2)政策风险:核电行业高度受政府监管,若相关政策出现变化可能会对核电发展产生影响;
(3)核安全风险:若世界范围内发生核事故,将会对项目推进节奏、核电长期发展空间造成不利影响。
—————————————————————
报告属于原作者,我们不做任何投资建议!
获取更多精选报告请登录【远瞻智 库官网】或点击:报告下载|文档下载|免费报告|行业研究报告|品牌报告|战略报告|人力资源报告|培训课件|工作总结|远瞻文库-为三亿人打造的有用知识平台
11月de蔷薇
近年来,中国核能发电量持续上涨。2016年中国核能发电量亿千瓦时,2020年中国核能发电量亿千瓦时。2021年1-8月,中国核能发电量亿千瓦时,同比增长。
未来发展趋势:
1.我国核电将在确保安全的前提下向积极有序发展的新阶段转变
在碳达峰、碳中和的背景下,我国能源电力系统清洁化、低碳化转型进程将进一步加快,核能作为近零排放的清洁能源,将具有更加广阔的发展空间,预计保持较快的发展态势,我国自主三代核电会按照每年6~8台的核准节奏,实现规模化批量化发展。
预计到2025年,我国核电在运装机7000万千瓦左右;到2030年,核电在运装机容量达到亿千瓦,核电发电量约占全国发电量的8%。
2.科技创新将进一步增强核能产业自立自强能力
核能科技创新对维护国家能源安全、建设科技强国、促进国民经济高质量发展的作用突出。
发展背景:中国发电量逐年增加,清洁能源逐步替代火电
核反应堆是由原子分裂驱动的,这一过程称为裂变,其中一个粒子(一个“中子”)射向一个原子,然后分裂成两个更小的原子和一些额外的中子。一些被释放的中子撞击其他原子,导致它们也裂变并释放更多的中子。这叫做连锁反应。
链式反应中原子的裂变也以热的形式释放出大量能量。产生的热量通过循环流体(通常是水)从反应器中移除。这些热量可以用来产生蒸汽,驱动涡轮机发电。
在全球能源危机不断加剧及环保要求日趋严格的大背景下,各地区能源转型之路不断加速,核电作为清洁的基荷电源,对“双碳”建设具有重要意义。
萌哒哒的Ashley
这个不好回答~!!因为全世界都不知道以色列的核武到底有多大的实力。他也没有正式的公开他们有核武器,就算有也不是大规模毁灭性的,个人判断可能也就是微型当量的冲击波核弹类似的武器。华社耶路撒冷6 月1 8 日电(记者谭新木)以色列地震局局长夏皮洛1 8 日断然否认有关以曾于上月底在其南部埃拉特湾进行过核试验的传闻。夏皮洛当天在接受以色列电台采访时说,如果以色列确实进行了核试验,不仅本国的地震仪能监测到,周边国家的地震监测网络也会监测到,因为目前的地震监测仪十分敏感,数千公里之外的震动都会被监测到。据以色列媒体1 8 日披露,以议会工党议员埃拉尔和联合阿拉伯党议员达瓦舍1 7 日晚在议会会议上说,他们从国际原子能机构获悉,以色列于5 月2 8 日在埃拉特湾进行了核试验,并在该地区引发了一次地震。他们质问国防部副部长夏龙是否知道此事。夏龙拒绝回答两位议员的问题,但他在随后发表的一份声明中驳斥他们的说法“毫无根据”。他表示,以色列是核禁试签字国之一,并一直遵守条约的有关规定。以色列原子能委员会发言人也表示,以色列从来没有进行过核试验,也没有接到过国际原子能机构的有关报告。为了保持一种模糊的威慑力,长期以来以色列官方既不公开承认也不公开否认拥有核武器。[法新社-南非新闻联合社2006年5月19日电]据以色列《新消息报》5月19日的消息,根据美国最新解密的一份文件,以色列和南非曾于1979年在南极北部的海上平台进行过一次核试验。没有1000字的
木易木每
核武器的出现,是20世纪40年代前后科学技术重大发展的结果。1939年初,德国化学家O.哈恩和物理化学家F.斯特拉斯曼发表了铀原子核裂变现象的论文。几个星期内,许多国家的科学家验证了这一发现,并进一步提出有可能创造这种裂变反应自持进行的条件,从而开辟了利用这一新能源为人类创造财富的广阔前景。但是,同历史上许多科学技术新发现一样,核能的开发也被首先用于军事目的,即制造威力巨大的原子弹,其进程受到当时社会与政治条件的影响和制约。从1939年起,由于法西斯德国扩大侵略战争,欧洲许多国家开展科研工作日益困难。 同年9月初,丹麦物理学家.玻尔和他的合作者.惠勒从理论上阐述了核裂变反应过程,并指出能引起这一反应的最好元素是同位素铀235。 正当这一有指导意义的研究成果发表时,英、法两国向德国宣战。1940年夏,德军占领法国。法国物理学家.约里奥-居里领导的一部分科学家被迫移居国外。英国曾制订计划进行这一领域的研究,但由于战争影响,人力物力短缺,后来也只能采取与美国合作的办法,派出以物理学家J.查德威克为首的科学家小组,赴美国参加由理论物理学家.奥本海默领导的原子弹研制工作。在美国,从欧洲迁来的匈牙利物理学家齐拉德·莱奥首先考虑到,一旦法西斯德国掌握原子弹技术可能带来严重后果。经他和另几位从欧洲移居美国的科学家奔走推动,于1939年8月由物理学家A.爱因斯坦写信给美国第32届总统.罗斯福,建议研制原子弹,才引起美国政府的注意。但开始只拨给经费6000美元,直到1941年12月日本袭击珍珠港后,才扩大规模,到1942年8月发展成代号为“曼哈顿工程区”的庞大计划,直接动用的人力约60万人,投资20多亿美元。到第二次世界大战即将结束时制成 3颗原子弹,使美国成为第一个拥有原子弹的国家。制造原子弹,既要解决武器研制中的一系列科学技术问题,还要能生产出必需的核装料铀235、钚239。天然铀中同位素铀235的丰度仅%,按原子弹设计要求必须提高到90%以上。当时美国经过多种途径探索研究与比较后,采取了电磁分离、气体扩散和热扩散三种方法生产这种高浓铀。供一颗“枪法”原子弹用的几十千克高浓铀,是靠电磁分离法生产的。建设电磁分离工厂的费用约3亿美元(磁铁的导电线圈是用从国库借来的白银制造的,其价值尚未计入)。钚239要在反应堆内用中子辐照铀238的方法制取。 供两颗“内爆法”原子弹用的几十千克钚239,是用3座石墨慢化、水冷却型天然铀反应堆及与之配套的化学分离工厂生产的。以上事例可以说明当时的工程规模。由于美国的工业技术设施与建设未受到战争的直接威胁,又掌握了必需的资源,集中了一批国内外的科技人才,使它能够较快地实现原子弹研制计划。德国的科学技术,当时本处于领先地位。1942年以前,德国在核技术领域的水平与美、英大致相当,但后来落伍了。美国的第一座试验性石墨反应堆,在物理学家E.费密领导下,1942年12月建成并达到临界;而德国采用的是重水反应堆,生产钚239,到1945年初才建成一座不大的次临界装置。为生产高浓铀,德国曾着重于高速离心机的研制,由于空袭和电力、物资缺乏等原因,进展很缓慢。其次,A.希特勒迫害科学家,以及有的科学家持不合作态度,是这方面工作进展不快的另一原因。更主要的是,德国法西斯头目过分自信,认为战争可以很快结束,不需要花气力去研制尚无必成把握的原子弹,先是不予支持,后来再抓已困难重重,研制工作终于失败。胖子(投向长崎的原子弹) 1945年5月德国投降后,美国有不少知道“曼哈顿工程”内幕的人士,包括以物理学家J.弗兰克为首的一大批从事这一工作的科学家,反对用原子弹轰炸日本城市。当时,日本侵略军受到中国人民长期抗战的有力打击,实力大大削弱。美、英在太平洋地区的进攻,又几乎全部摧毁日本海军,海上封锁使日本国内的物资供应极为匮泛。在日本失败已成定局的情况下,美国仍于8月6日、9日先后在日本的广岛和长崎投下了仅有的两颗原子弹,代号分别为“小男孩” 和“胖子”。苏联在1941年6月遭受德军入侵前,也进行过研制原子弹的工作。铀原子核的自发裂变,是在这一时期内由苏联物理学家Г.Н.弗廖罗夫和Κ.А.佩特扎克发现的。卫国战争爆发后,研制工作被迫中断,直到1943年初才在物理学家И.В.库尔恰托夫的组织领导下逐渐恢复,并在战后加速进行。1949年8月,苏联进行了原子弹试验。1950年1月,美国总统.杜鲁门下令加速研制氢弹。1952年11月,美国进行了以液态氘为热核燃料的氢弹原理试验,但该实验装置非常笨重,不能用作武器。1953年8月,苏联进行了以固态氘化锂6为热核燃料的氢弹试验,使氢弹的实用成为可能。 美国于1954年2月进行了类似的氢弹试验。英国、法国先后在50和60年代也各自进行了原子弹与氢弹试验。中国在开始全面建设社会主义时期,基础工业有了一定的发展,即着手准备研制原子弹。1959年开始起步时,国民经济发生严重困难。 同年6月,苏联政府撕毁中苏在1957年10月签订的关于国防新技术协定,随后撤走专家,中国决心完全依靠自己的力量来实现这一任务。中国首次试验的原子弹取"596"为代号,就是以此激励全国军民大力协同做好这项工作。1964年10月16日,首次原子弹试验成功。经过两年多,1966年12月28日,小当量的氢弹原理试验成功;半年之后,于1967年6月17日成功地进行了百万吨级的氢弹空投试验。中国坚持独立自主、自力更生的方针,在世界上以最快的速度完成了核武器这两个发展阶段的任务。1945年8月6日和9日,在第二次世界大战结束的前夕,美国空军在日本的广岛和长崎接连投掷了两枚原子弹。这场人类有史以来的巨大灾难,造成了10万余日本平民死亡和8万多人受伤。原子弹的空前杀伤和破坏威力,震惊了世界,也使人们对以利用原子核的裂变或聚变的巨大爆炸力而制造的新式武器有了新的认识。美国对日本投下的两颗原子弹,是以带降落伞的核航弹形式,用飞机作为运载工具的。以后,随着武器技术的发展,已形成多种核武器系统,包括弹道核导弹、 巡航核导弹、 防空核导弹、反导弹核导弹、反潜核火箭、深水核炸弹、核航弹、核炮弹、核地雷等。其中,配有多弹头的弹道核导弹,以及各种发射方式的巡航核导弹,是美、苏两国装备的主要核武器。通常将核武器按其作战使用的不同划分为两大类,即用于袭击敌方战略目标和防御己方战略要地的战略核武器,和主要在战场上用于打击敌方战斗力量的战术核武器。苏联还划分有“战役战术核武器”。核武器的分类方法,与地理条件、社会政治因素有关,并不是十分严格的。自70年代末以后,美国官方文件很少使用“战术核武器”,代替它的有“战区核武器”、“非战略核武器”等,并把中远程、中程核导弹也划归这一类。已生产并装备部队的核武器,按核战斗部设计看,主要属于原子弹和氢弹两种类型。至于核武器的数量,并无准确的公布数字,有关研究机构的估计数字也不一致。按近几年的资料综合分析,到80年代中期,美、苏两国总计有核战斗部50000枚左右,占全世界总数的95%以上。其梯恩梯当量,总计为120亿吨左右。而第二次世界大战期间,美国在德国和日本投下的炸弹,总计约200万吨梯恩梯,只相当于美国B-52型轰炸机携载的2枚氢弹的当量。从这一粗略比较可以看出核武器库贮量的庞大。美苏两国进攻性战略核武器(包括洲际核导弹、潜艇发射的弹道核导弹、巡航核导弹和战略轰炸机)在数量和当量上比较,美国在投射工具(陆基发射架、潜艇发射管、飞机)总数和梯恩梯当量总值上均少于苏联,但在核战斗部总枚数上多于苏联。考虑到核爆炸对面目标的破坏效果同当量大小不是简单的比例关系,另一种估算办法是以一定的冲击波超压对应的破坏面积来度量核战斗部的破坏能力,即取核战斗部当量值(以百万吨为计算单位)的2/3次方为其“等效百万吨当量”值(也有按目标特性及其分布和核攻击规模大小等不同情况,选用小于2/3的其他方次的),再按各种核战斗部的枚数累计算出总值。按此法估算比较美、苏两国的战略核武器破坏能力,由于当量小于百万吨的核战斗部枚数,美国多于苏联,两国的差距并不很大。但自80年代以来,随着苏联在分导式多弹头导弹核武器上的发展,这一差距也在不断扩大。而对点(硬)目标(见点目标)的破坏能力,则核武器投射精度起着更重要的作用,由于在这方面美国一直领先,仍处于优势。除美国、苏联、英国、法国和中国已掌握核武器外,印度在1974年进行过一次核试验。一般认为,掌握必要的核技术并具有一定工业基础及经济实力的国家,也完全有可能制造原子弹。由于核武器投射工具准确性的提高,自60年代以来,核武器的发展,首先是核战斗部的重量、尺寸大幅度减小但仍保持一定的威力,也就是比威力(威力与重量的比值)有了显著提高。例如,美国在长崎投下的原子弹,重量约吨,威力约2万吨;70年代后期,装备部队的“三叉戟”Ⅰ潜地导弹,总重量约吨,共8个分导式子弹头,每个子弹头威力为10万吨,其比威力同长崎投下的原子弹相比,提高135倍左右。威力更大的热核武器,比威力提高的幅度还更大些。但一般认为,这一方面的发展或许已接近客观实际所容许的极限。自70年代以来,核武器系统的发展更着重于提高武器的生存能力和命中精度,如美国的“和平卫士/MX” 洲际导弹、“侏儒”小型洲际导弹、“三叉戟”Ⅱ潜地导弹,苏联的SS-24、SS-25洲际导弹,都在这些方面有较大的改进和提高。其次,核战斗部及其引爆控制安全保险分系统的可靠性,以及适应各种使用与作战环境的能力,也有所改进和提高。美、苏两国还研制了适于战场使用的各种核武器,如可变当量的核战斗部,多种运载工具通用的核战斗部,甚至设想研制当量只有几吨的微型核武器。特别是在核战争环境中如何提高核武器的抗核加固能力,以防止敌方的破坏,更受到普遍重视。此外,由于核武器的大量生产和部署,其安全性也引起了有关各国的关注。核武器的另一发展动向,是通过设计调整其性能,按照不同的需要,增强或削弱其中的某些杀伤破坏因素。“增强辐射武器”与“减少剩余放射性武器”都属于这一类。前一种将高能中子辐射所占份额尽可能增大,使之成为主要杀伤破坏因素,通常称之为中子弹;后一种将剩余放射性减到最小,突出冲击波、光辐射的作用,但这类武器仍属于热核武器范畴。至于60年代初曾引起广泛议论的所谓“纯聚变武器”,20多年来虽然做了不少研究工作,例如大功率激光引燃聚变反应的研究,80年代也仍在继续进行,但还看不出制成这种武器的现实可能性。核武器的实战应用,虽仍限于它问世时的两颗原子弹,但由于40年来核武器本身的发展,以及与它有关的多种投射或运载工具的发展与应用,特别是通过上千次核试验所积累的知识,人们对其特有的杀伤破坏作用已有较深的认识,并探讨实战应用的可能方式。美、苏两国都制订并多次修改了强调核武器重要作用的种种战略。有矛必有盾。在不断改进和提高进攻性战略核武器性能的同时,美、苏两国也一直在寻求能有效地防御核袭击的手段和技术。除提高核武器系统的抗核加固能力,采取广泛构筑地下室掩体和民防工程等以减少损失的措施外,对于更有效的侦察、跟踪、识别、拦截对方核导弹的防御技术开发研究工作也从未停止过。60年代,美、苏两国曾部署以核反核的反导弹系统。1972年 5月,美、苏两国签订了《限制反弹道导弹系统条约》。不久,美国停止“卫兵”反导弹系统的部署。1984年初,美国宣称已制订了一项包括核激发定向能武器、高能激光、中性粒子束、非核拦截弹、电磁炮等多层拦截手段的“战略防御倡议”。尽管对这种防御系统的有效性还存在着争议,但是可以肯定,美、苏对核优势的争夺仍将持续下去。由于核武器具有巨大的破坏力和独特的作用,与其说它可能会改变未来全球性战争的进程,不如说它对现实国际政治斗争已经和正在不断地产生影响。70年代末,美国宣布研制成功中子弹,它最适于战场使用,理应属于战术核武器范畴,但却受到几乎是世界范围的强烈反对。从这一事例也可以看出,核武器所涉及的斗争的复杂性。中国政府在爆炸第一颗原子弹时即发表声明:中国发展核武器,并不是由于相信核武器的万能,要使用核武器。恰恰相反,中国发展核武器,是被迫而为的,是为了防御,为了打破核大国的核垄断、核讹诈,为了防止核战争,消灭核武器。此后,中国政府又多次郑重宣布:在任何时候、任何情况下,中国都不会首先使用核武器,并就如何防止核战争问题一再提出了建议。中国的这些主张已逐渐得到越来越多的国家和人民的赞同和支持。
在祖国六十年的变化弹指挥间、沧桑巨变,60年前,中华人民共和国宣告成立,开启了中国历史的新纪元。在中国共产党的领导下,亿万人民艰苦创业,努力探索中国特色社会主义
开题报告 中小企业融资问题及对策 一、 选择这个题目的来源 中小企业是国民经济发展中的一支重要力量,在促进经济增长和解决劳动力就业方面起着重要作用,如何有效解决
您好:中国经济随着改革开放的深入,中国的经济正一天又一天的发展,这不仅仅是国家宏观调控的成果,更是我们人民对国家经济向好的信心,世界在变,中国在变,中国人民的生
开题报告的格式及如何写论文开题报告 大学生活将要谢下帷幕,大家都在认真的做毕业设计,而我们做毕业设计前指导老师都会要求先写开题报告,来参考自己需要的开题报告吧!
为什么国外动画比国内的经典
优质学术期刊投稿问答知识库