傻兮兮的呆呆
数学建模是一种将自然界、社会现象或其他领域的问题转化为数学问题,并运用数学方法进行分析和解决的方法。数学建模论文的优点如下:1. 提高数学素养:数学建模需要掌握多种数学知识和技能,如微积分、线性代数、概率论等,因此能够提高研究者的数学素养。2. 增强实践能力:数学建模需要研究者将问题转化为数学模型,并进行求解和验证,这培养了研究者的实践能力。3. 提高解决问题的能力:数学建模是一种解决实际问题的有效方法,通过数学建模能够提高研究者解决问题的能力。4. 推动学科交叉:数学建模需要研究者掌握多种领域的知识,因此能够促进学科之间的交叉和融合。5. 促进科技进步:数学建模能够解决实际问题,因此能够促进科技进步,提高社会效益。总之,数学建模论文的优点在于能够提高研究者的数学素养、实践能力和解决问题的能力,促进学科交叉和科技进步。
黑暗中的精灵88
随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.
[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.
[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。
一、数学建模的概念
想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略
1.根据事物之间的共性进行数学建模
想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。
2.认识建模思想的本质
建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。
建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。
3.发挥教材在数学建模上的作用
教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。
数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。
1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。
3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。
Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。
5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。
7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。
8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。
9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。
10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。
数学建模全国优秀论文相关 文章 :
★ 数学建模全国优秀论文范文
★ 2017年全国数学建模大赛获奖优秀论文
★ 数学建模竞赛获奖论文范文
★ 小学数学建模的优秀论文范文
★ 初中数学建模论文范文
★ 学习数学建模心得体会3篇
★ 数学建模论文优秀范文
★ 大学生数学建模论文范文(2)
★ 数学建模获奖论文模板范文
★ 大学生数学建模论文范文
吐司酸奶
ncsgedbfcuyeqfewdye34yrcuirehs uvy 8y3iuyey 8queud0eeouthg7eryershryewyr3hfe8uyrf78wyrhfye7gfy7gbt7c64g378cbt78t78tc67tfe67trcr76etcr87tuyiegcbuybcyiycniuyniuyniubyvuibt87b6789fv6gbiu6bgi7b678b67bc7icbuycbfcuic78cybfutyicvcuvcfuibcfiucb87cfbfc7bcyuicbycuitbcuycvtuyicfvtcfyubtcfucbtfuyctbcytcytbuyftbfytbfuytbctbyucbtuyctbucytbc87tbc387cynut7ute78crtbtx7ytb6xt7xt78xtw78t7td67wtedastyrxadftsre2grsd7er532wt7e5et43yedtw 1) 中国人口究竟有多少?这个问题像迷一样困绕着许多中国人口学家,他们大都不敢肯定上世纪90年代以来,中国到底出生了多少人。有人说2000年中国不是进行过人口普查吗?普查后的人口还不清楚吗?可是人口普查事后分析和调查表明,普查存在严重的漏报和重报问题,以至于计生委和统计局在调整90年代以来的人口公报中的出生人口时竟用国家教委的小学新生入学统计数据作依据,而且调整后的数据与普查数据相差很大。这样的数据我相信大部分人口学家是不会认可的。而计生委和统计局正是根据这样的数据把2005年1月6日确定为中国大陆第13亿人口日。当然,还有不少人根据自己周围有很多超生现象,竟然认为现在中国大陆远不止13亿人口,可能有14亿到15亿甚至16亿之多。总之中国人口状况不管是专家还是民众还是政府,到目前为止都没有一个共同的认识,可以说如同走在迷雾中一般,谁也不敢肯定;然而,当世界许多国家都在为人口减少或老龄化问题而想法促进生育时,我们还在迷雾中想法稳定低生育率,这样下去当迷雾散尽,人口老化、性别比失调问题到来之时,我们将如何面对呢?如果到时这些问题无法解决从而阻碍了中华民族强盛复兴之路时,我们有何面目面对子孙后代呢?为此笔者搜集各种数据,以期找到中国人口真相,让我们从人口迷雾中 走出来。 (2) 讨论人口政策调整的学界声音正在世界最大的人口大国——中国浮出水面。近日,清华大学中国国情研究中心主任胡鞍钢在北京《二十一世纪中国人口与经济发展》新书发布会上表示,一味减少人口数量规模不一定是好事,中国应适当适时调整人口政策。 胡鞍钢表示,2030年以后,中国人口条件将发生巨变,与印度相比,劳动力减少会使中国在国际经济发展竞争中处于劣势,从这个意义上说,“防止人口负增长”是一条底线。文章表示,目前中国人口数量压力已相对减轻,但人口老化、男女比例失衡等问题却开始浮现。由中国社科文献出版社发布的《二十一世纪中国人口与经济发展》则认为,2006年至2010年是中国实行二孩晚育软着陆平稳过渡的最好时机。逐渐放宽生育控制政策可避免人为加剧中国人口生育率下降和“未富先老”的进程。 对专家的这一说法,笔者表示质疑。 首先,人口基数大是目前中国人口最显著的特征。人口众多、资源相对不足、环境承载能力较弱是中国现阶段的基本国情,短时间内难以改变。庞大的人口数量一直是中国国情最显著的特点之一,2005年全国1%人口抽样调查主要数据公报显示,2005年年末全国总人口为130756万人,比上年末增加768万人,人口自然增长率为‰。虽然中国已经进入了低生育率国家行列,但由于人口增长的惯性作用,当前和今后十几年,中国人口仍将以年均800-1000万的速度增长。按照目前总和生育率预测,2010年和2020年,中国人口总量将分别达到亿和亿;人口总量高峰将出现在2033年前后,达15亿左右。这也意味着,即便是我国进入人口负增长阶段,也将是在15亿这样一个庞大基数上的负增长。 其次,对劳动力减少这一问题应全面观察。近来,“民工荒”的惊呼之声占据了媒体的大幅版面,“广东缺100万民工”,“珠三角惊呼民工短缺”。对于这种变化的玄机是众说纷纭,但在不少专家学者看来,“民工荒”在很大程度上是技能型工人的缺失,经有关部门证实,广东等省缺少的是一些高级管理人员和高级技工,但是从来不缺少普通民工。另一方面,农村目前还有大量剩余劳动力需要转化,按人口城镇化率每年增加1个百分点测算,到2020年还将从农村转移出3亿左右的人口。政府应该在打破户籍制度上加快进程,以便让劳动力自由流动,这样既可以缓解城市劳动力短缺,又可以减轻农村劳动力过剩的压力。目前需要做的不是增加绝对数量的劳动力,而是如何提高现有劳动力素质的问题。 第三,人口老龄化问题不应该成为调整人口政策的理由。应该说人口老龄化问题是一个全球化问题,目前西方各主要资本主义国家均面临这一难题。我国的人口老龄化有一定的特殊情况,即:计划生育政策实施近30年来,相对人口增加速度逐步放缓,但由于人口基数大,绝对人口增加仍然给国造成巨大压力。可以说,我们的老龄化是在“偿旧债”,是上一代人加在计划生育一代身上的“阵痛”,是一种“父债子偿”的行为。在即将到来的“421”家庭格局中,如果“1”再变成“2”,那么中间的“2”将更加不堪重负。解决人口老龄化问题的根本出发点不应该寄托于“多生”,而应该在加快发展国民经济的基础上,逐步完善社会保障体制,由过去的“养儿防老”向社会养老模式转变。 此外,男女比例失衡等等衍生问题更不是目前调整人口政策的理由。为遏制出生人口性别比升高的势头,国家采取了一系列措施,颁布了《人口与计划生育法》、《关于禁止非医学需要的胎儿性别鉴定和选择性别的人工终止妊娠的规定》等法律法规,启动了“关爱女孩行动”,倡导男女平等。目前的问题主要是出在政策的执行层面上。调整人口政策,放宽二胎生育对遏制男女比例失衡是否会有促进,还有待进一步论证。 目前我国仍然面临巨大的人口压力,在人口政策的制订上仍需谨慎行事。2006年2月9日,中国国务院发布《国家中长期科学和技术发展规划纲要(2006—2020年)》,提出未来十五年的人口目标是将人口数量控制在十五亿以内。其在人口与健康领域确定的发展思路之一,即是控制人口出生数量,提高出生人口质量。纲要还称,稳定低生育水平,提高出生人口素质,有效防治重大疾病,是建设和谐社会的必然要求。综合以上分析,笔者认为目前调整人口政策时机尚不成熟。 第一个问题(1): 国家统计局16日发布的全国1%人口抽样调查主要数据公报说,2005年11月1日零时,全国总人口为130628万人。 这个数据与第五次全国人口普查的总人口(2000年11月1日零时)相比,增加了4045万人,增长;年均增加809万人,年均增长。 国家统计局公报说,根据调查数据推算,2005年年末全国总人口为130756万人。 全国人口中,具有大学程度(指大专及以上)的人口为6764万人,高中程度(含中专)的15083万人,初中程度的46735万人,小学程度的40706万人。 公报说,全国人口中,流动人口为14735万人,其中,跨省流动人口4779万人;居住在城镇的人口占总人口的,居住在乡村的占;男性占总人口的;女性占;60岁及以上的人口占总人口的。 第(2)个问题: 这个网址要你所要的东西 1)利用有关数据,给出我国人口现状的统计结果; (2)试建立模型,给出我国调整人口生育政策的时机、具体方案并预测结果
“一代之约”的时间已到。在计划生育政策主导下的早期出生者,已经到了结婚生子的年龄。同时,中国的人口状况也发生了翻天覆地的变化。计划生育政策结下硕果的同时,也酿下
近期发布 的“单独二胎”政策可谓是一飞跃性的开放政策, 但是“单独二胎”政策并不意 味着中国解放二胎政策,是夫妻双方一方为独生子女的可生育第二个孩子政策, 那么
2013年11月,放开“单独二孩”政策。然而我们该如何写有关单独二孩的形势与政策论文呢?下面是我给大家推荐的,希望大家喜欢! 《对“单独两孩”政策的思考》 摘
历年优秀论文要不?
三孩政策是中国为积极应对人口老龄化,而实行的一种计划生育政策。有利于改善中国人口结构、落实积极应对人口老龄化国家战略、保持中国人力资源禀赋优势。2021年5月3
优质学术期刊投稿问答知识库