掬黛小公主
初等变换:交换矩阵的两行(列);用一个不为零的数乘矩阵的某一行(列);用一个数乘矩阵某一行(列)加到另一行(列)上。
利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系等。
如果一个矩阵是方阵,我们可以通过看初等变换后的矩阵是否可逆,来判断原矩阵是否可逆。矩阵的3种初等变换都是可逆的,且其逆变换也是同一种类型的初等变换。
扩展资料:
设A是一个m×n矩阵,对A施行一次初等行变换,其结果等价于在A的左边乘以相应的m阶初等矩阵;对A施行一次初等列变换,其结果等价于在A的右边乘以相应的n阶初等矩阵。反之亦然。
块矩阵有相应的加法、乘法、数乘、转置等运算的定义,也可进行初等变换。
emmazhaoyang
简述矩阵的初等变换目前有哪些用途,具体如何操作初等行变换的用途:1.求矩阵的秩,化行阶梯矩阵,非零行数即矩阵的秩同时用列变换也没问题,但行变换就足够用了!2.化为行阶梯形求向量组的秩和极大无关组(A,b)化为行阶梯形,判断方程组的解的存在性3.化行最简形把一个向量表示为一个向量组的线性组合方程组有解时,求出方程组的全部解求出向量组的极大无关组,且将其余向量由极大无关组线性表示
设A,B和C是任意同阶方阵,则有:(1) A~ A (2) 若A~ B,则 B~ A (3) 若A~ B,B~ C,则A~ C (4) 若A~ B,则r(A)=
在国内外有很多关于特征值与特征向量的研究成果,并且有很多专家学者涉足此领域研问题,吴江、孟世才、许耿在《浅谈线性代数>中“特征值与特征向量”的引入》中从线性空间
矩阵的秩是反映矩阵固有特性的一个重要概念。计算矩阵的秩的一个有用应用是计算线性方程组解的数目。如果系数矩阵的秩等于增广矩阵的秩,则方程组只要有一个解。在这种情况
你的问题,具体是什么?
一类特殊对称矩阵的特征值与特征向量陆全 徐仲 【摘要】:【作者单位】:西北工业大学西北工业大学【关键词】:矩阵的特征值正交特征向量特征值与特征向量对称矩阵实对称
优质学术期刊投稿问答知识库