你要先有论文的目的和分析思路,然后根据目的的论文和分析思路,确定需要收集的数据和类型,最后才考虑 应该用spss什么方法来实现。下面是我自己写的一个 带数据分析的论文写作指导首先,我要说明这里的指导并非常规意义的指导,我这里说的指导是到底应该如何写论文(应该还是很抽象,不过看完就知道了)。迄今为止,我大约也帮忙做了能有上千份的学生论文数据分析部分,包括一部分的整篇论文写作,其中涉及到有医学类、护理类、人文社科类、教育类、经济学类、心理学类等,单凡需要用到数据分析的论文。因为我是做市场研究与数据分析的,擅长的主要工具是spss,不敢说百分百精通spss,但是应付个八九十应该是足够了,很自然的平时就利用下班和业余时间帮学生做一些论文数据分析以及论文写作指导。很多论文的核心部分都包括数据分析,而统计学也应该是所有学科应该学习的一门重要课程,但是恰恰相反,很多学科只是把统计学和数据分析作为一项选修甚至不重要的课程对待,这样导致学生在最后做论文时完全不懂。而在这种情况下,很多学生因为对数据分析的一窍不通,导致论文从开始的设计到后续的数据收集、整理等都会出现问题,最终导致分析出问题。因此,在对数据分析一窍不通的情况下,应该如何从头构建论文及写作呢?很多论文虽然数据分析部分是核心,但是不管哪种论文的写作,都脱离不了论文的框架。因此,具体的过程应该如下:首先是选题,当然很多时候是导师直接给选题,这个没有太多讨论。其次是选题确定后,马上要做的不是想我应该怎么去写作,或者在哪抱怨“哎~~郁闷,完全不知道怎么写嘛”。而是先通过文献查找,看前人在这个选题方面已经做了哪些研究,都是如何做的。通过查找文献找到跟选题有关的资料,然后对这些资料进行整理,整理不需要计较参考文献的结论和数据细节等,而是要把每篇文献的研究目的、采用的研究方法、采用的分析方法整理出来。当然参考文献中的分析方法你可能还完全不懂,但是没关系,你先把这些参考文献中使用的分析方法全部罗列出来,如线性回归、方差分析、均值t检验、logistic回归等,把这些文献中常用的统计方法罗列出来,你需要弄清楚对应关系,即每种分析方法是用来支持和实现什么样的研究目的,以及能够得出什么样的结论,认真阅读文献就能实现这一步。第三.通过上一步,你应该朦胧的知道你选题相关的参考文献中常用的统计方法名称,以及这些统计方法能够帮助实现哪些目的,或者得出什么结论,同时也不会对自己的选题那么恐惧和迷茫了,因为可能你的选题已经有前人做过了,你的论文只是“复制”一遍而已了,我说的复制是重复一遍前人的研究。在这种情况下,可以构思下自己的选题,这一步属于纯理论层面的,你需要将自己的思路具体化,比如要实现什么目的,很自然的需要什么数据分析方法也就能确定了。当然很多论文会预先设计一系列待验证的假设,也是在这一步完成,因为你找到的文献中可能会存在矛盾的结论,可能会存在一些你认为的研究缺陷(文献看多了,自然自己就会有想法出来了),提出自己的一系列假设,能够很清楚的指导后面的数据收集和分析。第四.选题、假设还有研究方法这些经过前面几步都能确定了,接下来就是要考虑具体研究和收集数据的环节了。这个环节最重要的也是首要的是弄清楚你的数据应该是什么类型的,通过哪种方法来获取。其实也容易了,因为前面你已经确定了统计分析方法,而每种方法有它特定的数据类型要求,比如是分类数据(如性别、民族、年级等)、比如连续性数据(如年龄、身高、体重、温度、长度、距离等)。分类数据简单通俗点的理解就是这些数字本身是没有意义的,是人为赋予它一定的含义,这些数据之间不存在连续性,且加减乘除没有意义,而连续性数据是数据本身有意义,且能够进行一些加减乘除运算。确定了所需要的数据类型,就大致能够知道在数据收集时,应该注意的问题。比如一份问卷调查,其中应该如何设计问题也就大致清楚了,通常问卷设计时就要考虑两种数据类型的问题,因为不同的选项设计会导致不同的数据类型。如你设计一个问题的答案选项是“有/没有”、“是/否”这种是属于分类数据,如果你的答案选项是李克特量表式“非常满意----非常不满意”这种,在处理时可以按照分类数据,只能统计出一些百分比,也可能将其按照连续数据如12345打分形式,这样可以求均值,可以做很多其他多元统计分析。因此这一步确定数据类型很关键,如果数据类型弄错的话,则收集的数据完全无用。第五.具体收集数据过程,不细说了,收集回来之后就是数据的录入。记住一定要录入原始的数据,而不是经过加减整理汇总后的数据。数据录入格式也是有要求的,一般大致同样的情况下,都是一行代表一个个案或者一份问卷的数据,而一列对应表示的是问卷中的一个问题,即变量。因此数据录入完成后,应该是有多少样本数据,就有多少行,数据中包含多少个指标,那就有多少列。第六.这一步才是你应该开始头疼的数据分析不会了怎么办。因为到这里才开始是数据的具体分析过程了。不会怎么办,前面已经知道了分析方法,这种情况,只有找本教材,然后找对应的方法介绍学习即可,或者实在不行找人指导,找人帮忙等等。最后。分析完成后,开始整篇论文的写作。其实完成前面的每一步,到最后写文献综述以及讨论时,自然就会得心应手了,很少会需要绞尽脑汁甚至东拼西凑。
没问题,数据分析你要提供数据
1、首先打开SPSS版本软件,找到想要进行编辑处理的数据,如下图所示。
2、找到上方菜单栏中的分析菜单,鼠标移动至一般线性模型,然后选择单变量,点击鼠标左键选择。
3、在单变量对话框中,将变量分别对应移至因变量和协变量,这里将身高移动至因变量,药物移动至协变量。
4、点击右侧菜单的选项,鼠标移动至单变量选项中,选中参数估算值,将参数估算值标记为打勾状态。
5、选中完成后,单击选项中的继续选项,然后在单变量对话框中单击确定,进行编辑之后的查看操作。
6、最后在SPSS的查看器中,可以看到药物对身高影响的显著性分析,红框中显著性为0<,具有显著性。
spss数据分析论文有具体的排版格式.
可以的,SPSSPRO就是在线版的SPSS,相较于SPSS复杂的安装流程,SPSSPRO涵盖全部专业统计算法模型、只需要上传数据、拖入数据,系统就一键自动分析出结果,并且可以复制、可以下载分析报告
截至目前,spsspro正式上线不到一周年,知网已经有60+与SPSSPRO相关的论文
通过分析数据误差来进行。论文误差分析spss要通过分析数据误差来进行,分析的分类一个类别自变量到单因素方差分析。可以用在线版spss分析平台spssau进行分析,操作非常简单,有个10分钟就能学会。不会的理论知识有帮助手册可以随时查阅,包括如果选择方法、数据分析思路、每个方法的案例常见问题等。以及结果同时输出智能文字建议,可配合专业知识对数据结果进行解读。
可以。spsspro就是spss的升级版。一般规范的分析需要有一些规范的格式,spsspro是将所有所有的结果都输出。spsspro是改总部于1984年推出的统计分析软件。其意义是开拓spss微型计算机系列产品的发展方向,极大地扩展其应用范围,并使其能够迅速应用于自然科学,技术科学和社会科学等领域。
SPSS软件主要用于对数据做统计学方面的一些分析和检验,是用于对数据进行一些基本处理、分析,以及做一些统计检验的软件,使用SPSS分析数据通常有以下几步:导入数据——>数据基本处理——>数据分析——>总结并得出结论。打开SPSS后会出现两个界面,如下图;图一是数据处理分析区,包括数据视图(数据处理区)和变量视图(数据包含各字段编辑区);图二是分析结果区,分析的各类结果都会在此显示。导入数据:在数据处理区左上方选择“文件”——>“导入数据”,导入相应格式的数据,此处我以csv文件格式为例。点击之后,出现如下对话框,选择好要处理的数据,点击“打开”,对要导入数据数据按需要进行预处理,再点击确定。
1. Introduction 简介2. Data Screening & Cleaning 数据筛选和整理3. Profile of Respondents 受访者介绍4. Reliability of the Measurement 测量的可靠性分析5. Descriptive of Main Variables 主要变量描述6. Correlation Analysis 相关性分析7. Multiple Regression Analysis 多元回归分析8. Summary of Findings 调查结果总结This chapter focuses on presenting the results of this research. It begins with Data Screening & Cleaning. Next, Profile of Respondents will be presented followed by Reliability of the Measurement, Descriptive of Main Variables and Correlation Analysis.
对于论文中用SPSS分析数据的部分,一般需要写以下八个小节:1. Introduction 简介2. Data Screening & Cleaning 数据筛选和整理3. Profile of Respondents 受访者介绍4. Reliability of the Measurement 测量的可靠性分析5. Descriptive of Main Variables 主要变量描述6. Correlation Analysis 相关性分析7. Multiple Regression Analysis 多元回归分析8. Summary of Findings 调查结果总结This chapter focuses on presenting the results of this research. It begins with Data Screening & Cleaning. Next, Profile of Respondents will be presented followed by Reliability of the Measurement, Descriptive of Main Variables and Correlation Analysis.本章重点介绍了本研究的结果。它从数据筛选和清理开始。接下来,将介绍受访者的概况,然后是测量的可靠性、主要变量的描述和相关分析。2. Data Screening & Cleaning 数据筛选和整理调查数据必须首先对数据输入错误进行筛选和清理,然后才能进行分析。我们首先使用函数频率和描述性来筛选数据输入错误来检测回答中的异常。然后我们还评估了是否有很多空白的回答,最后我们还检查了被调查者是否回答相同的回答。首先,将收集来的数据整合成进Excel;然后打开SPSS,按照"File"→"Open"→"Data"的顺序导入文件第二步我们需要定义数据,包括 name, label, label, value首先定义variable name:然后定义value:(这一步是需要根据自己的调查问卷,比如问卷中定义1为男性,2 为女性,那么我们编码的时候也需要这样写)以定义性别为例之后我们就可以进行数据筛选和整理了:下面为输出结果:在这一部分我们需要介绍关于受访者的信息,以确认不同受访者对调查结果是否有影响。我们选择描述性统计中的频率将需要分析的受访者背景数据移到右侧这是频率表输出结果对于这个结果我们不能直接复制到论文中,我们可以另整理一个表格,如下图:4. Reliability of the Measurement 测量的可靠性分析对于可靠性分析的操作:选择分析→刻度→可靠性分析将需要分析的变量移到右侧可靠性分析的输出结果整理为表格写进论文中5. Descriptive of Main Variables 主要变量描述。
摘要摘要是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜[3]。摘要的规范摘要是对论文的内容不加注释和评论的简短陈述,要求扼要地说明研究工作的目的、研究方法和最终结论等,重点是结论,是一篇具有独立性和完整性的短文,可以引用、推广。关键词关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。
选择分析→刻度→可靠性分析将需要分析的变量移到右侧可靠性分析的输出结果整理为表格写进论文中。
论文是一个汉语词语,拼音是lùn wén,古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。
它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。
每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。
论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。
需要演示结果,用科学的三线表,不用演示计算过程
spss数据分析论文有具体的排版格式.
如何分析信效度?
信效度:信度是效度的必要条件,信度低,效度一般都不高,但是信度高,效度也不一定高。二者的研究内容也有所不同,信度是研究回答是否可靠,效度是研究题项设计是否合理。
信度:研究数据是否可靠,也就是研究样本是否真实回答了问题。
效度:研究题是否能有效的表达研究信息或维度的概念信息,也就是研究问卷中的题项设计是否合理。
信度如何分析?以SPSSAU为例:
信度分析的位置在【问卷研究】→【信度】
信度一般针对量表题进行分析,数据格式常见是一个量表题为一列,举例如下:
信度系数:
背景:当前有一份数据,共涉及A1~A4,B1~B4,C1~C3,D1~D3共14个量表题,此14个题目共分为4个维度,分别称作A,B,C和D维度。现希望对此份数据信度度情况进行分析,以验证数据质量可靠。由于是分4个维度所以需要分析4次。先对A维度涉及A1~A4,进行分析,结果如下:
如果CITC值低于,可考虑将该项进行删除;如果“项已删除的α系数”值明显高于α系数,此时可考虑对将该项进行删除后重新分析。针对CITC值和项已删除的α系数一般用于预测试中。接着分析α系数,如果此值高于,则说明信度高;如果此值介于之间,则说明信度较好;如果此值介于,则说明信度可接受;如果此值小于,说明信度不佳;从上表可以看出α系数为大于,所以信度高,
效度:
结构效度:SPSSAU→问卷研究【效度】;区分效度和收敛效度:SPSSAU→验证性因子分析;
在spss的分析中,最主要的Cronbach’salpha系数。操作步骤为:点击分析-标度-可靠性分析-选择项-确定,只需要把问卷中的题目放到信度分析的选项框中就可以。效度分析对于很多的同学来说是最不好处理的。效度比较好代表的是问卷的数据内部一致性比较好,也就是说每个维度的所有题目的选择上基本是一致的,维度划分比较好。比方说:职业目标维度的5个题目分别为:1、对于将来做什么工作,我已经做了决定2、尽管现在我还是个学生,但是我能想象出将来自己工作状况3、我已经选定了我的职业,所以,现在我不用担心职业的问题4、对于职业,我已经做了明确的决定5、尽管以后我可能会改变想法,但现在,我已经选定了一个吸引我的职业。
问卷的效度有不同种类,分为内容效度(contentvalidity)、效标效度(criterionvalidity)和结构效度(constructvalidity)三个主要类型。内容效度也称表面效度或逻辑效度,是指测量目标与测量内容之间的适合性与相符性。对内容效度常采用逻辑分析与统计分析相结合的方法进行评价。逻辑分析一般由研究者或专家评判所选题项是否“看上去”符合测量的目的和要求。准则效度又称效标效度、实证效度、统计效度、预测效度或标准关联效度,是指用不同的几种测量方式或不同的指标对同一变量进行测量,并将其中的一种方式作为准则(效标),用其他的方式或指标与这个准则作比较,如果其他方式或指标也有效,那么这个测量即具备效标效度。例如,是一个变量,我们使用、两种工具进行测量。如果使用作为准则,并且和高度相关,我们就说也是具有很高的效度。当然,使用这种方法的关键在于作为准则的测量方式或指标一定要是有效的,否则越比越差。现实中,我们评价效标效度的方法是相关分析或差异显著性检验,但是在调查问卷的效度分析中,选择一个合适的准则往往十分困难,也使这种方法的应用受到一定限制。结构效度也称构想效度、建构效度或理论效度,是指测量工具反映概念和命题的内部结构的程度,也就是说如果问卷调查结果能够测量其理论特征,使调查结果与理论预期一致,就认为数据是具有结构效度的。它一般是通过测量结果与理论假设相比较来检验的。确定结构效度的基本步骤是,首先从某一理论出发,提出关于特质的假设,然后设计和编制测量并进行施测,最后对测量的结果采用相关分析或因子分析等方法进行分析,验证其与理论假设的相符程度。在实际操作的过程中,前面两种效度(内容效度和准则效度)往往要求专家定性研究或具有公认的效标测量,因而难以实现的,而结构效度便于可以采用多种方法来实现:第一种方法是通过模型系数评价结构效度。如果模型假设的潜变量之间的关系以及潜变量与可测变量之间的关系合理,非标准化系数应当具有显著的统计意义。特别地,通过标准化系数[1]可以比较不同指标间的效度。第二种方法是通过相关系数评价结构效度。如果在理论模型中潜变量之间存在相关关系,可以通过潜变量的相关系数来评价结构效度:显著的相关系数说明理论模型假设成立,具有较好的结构效度。第三种方法是先构建理论模型,通过验证性因子分析的模型拟合情况来对量表的结构效度进行考评。因此数据的效度检验就转化为结构方程模型评价中的模型拟合指数评价
相关分析是指两个变量之间是否存在相互依存的关系,比如学生的语文成绩和历史成绩之间是否存在正向的相互依存的关系,即是否学生语文成绩越好,历史成绩也会越好。相关分析是回归分析的前提条件,在具体的研究中只有变量之间相关显著,才有可能做进一步的回归分析,这在中介作用检验中是必须的前提步骤。
效度即是指数据测量的准确性。即测量结果的和所需要考察的内容的吻合度。一般在做研究时要报告数据的信效度以确定接下来一系列研究是否可信可行。在统计学中有很多种测量效度的标准和方法,比如效标效度,聚合(收敛)和区分效度,结构效度。
扩展资料:
注意事项:
1、针对效度分析,通常会使用内容效度或者结构效度,或者验证性因子分析(CFA)进行效度验证。
2、由于效度分析通过因子分析的方式验证,所以这里也涉及因子分析的指标。
3、分析α系数,如果此值高于则说明信度高。如果此值介于之间则说明信度较好;如果此值介于,则说明信度可接受;如果此值小于说明信度不佳。
4、如果CITC值低于,可考虑将该项进行删除。
5、如果项已删除的α系数值明显高于α系数,此时可考虑对将该项进行删除后重新分析。
参考资料来源:百度百科-spss
参考资料来源:百度百科-效度分析