好色上上签
哥哥,您这是逮着数据就往里面塞啊!而且你怎么没有给出因变量?我猜测是销售量?还是点击量?暂且不论你自变量的选择不正确,你的R Square值太小,最起码应该达到以上。模型拟合度相当不好,请删减自变量,再行回归!
j解y语h花
以Excel2010为例。
1、“开发工具”选项卡 中单击“加载项”组中的“加载项”按钮,打开“加载宏”对话框。如下图。勾选 “分析工具库”。
2、“数据”选项卡中“分析”组中的“数据分析”按钮,打开“数据分析”对话框。如下图。单击“回归”选项。
剩下的楼主自己搞定吧。
Queena兜兜
方法如下:选择成对的数据列,将使用“X、Y散点图”制成散点图。在数据点上单击右键,选择“添加趋势线”-“线性”,并在选项标签中要求给出公式和相关系数等,可以得到拟合的直线。由图中可知,拟合的直线是y=15620x+,R2的值为。因为R2>,所以这是一个线性特征非常明显的实验模型,即说明拟合直线能够以大于地解释、涵盖了实测数据,具有很好的一般性,可以作为标准工作曲线用于其他未知浓度溶液的测量。为了进一步使用更多的指标来描述这一个模型,我们使用数据分析中的“回归”工具来详细分析这组数据。在选项卡中显然详细多了,注意选择X、Y对应的数据列。“常数为零”就是指明该模型是严格的正比例模型,本例确实是这样,因为在浓度为零时相应峰面积肯定为零。先前得出的回归方程虽然拟合程度相当高,但是在x=0时,仍然有对应的数值,这显然是一个可笑的结论。所以选择“常数为零”。“回归”工具为我们提供了三张图,分别是残差图、线性拟合图和正态概率图。重点来看残差图和线性拟合图。在线性拟合图中可以看到,不但有根据要求生成的数据点,而且还有经过拟和处理的预测数据点,拟合直线的参数会在数据表格中详细显示。本实例旨在提供更多信息以起到抛砖引玉的作用,由于涉及到过多的专业术语,请各位读者根据实际,在具体使用中另行参考各项参数,此不再对更多细节作进一步解释。 残差图是有关于世纪之与预测值之间差距的图表,如果残差图中的散点在中州上下两侧零乱分布,那么拟合直线就是合理的,否则就需要重新处理。更多的信息在生成的表格中,详细的参数项目完全可以满足回归分析的各项要求。下图提供的是拟合直线的得回归分析中方差、标准差等各项信息。
文回归分析与预先假设不一致我能下,肯定好的
毕业论文中的双变量回归分析并不简单,需要进行充分的研究和分析。如果您在撰写毕业论文中遇到困难,可以咨询导师或其他专业人士的意见,以确保研究结果的科学性和可靠性。
哥哥,您这是逮着数据就往里面塞啊!而且你怎么没有给出因变量?我猜测是销售量?还是点击量?暂且不论你自变量的选择不正确,你的R Square值太小,最起码应该达到
1、“回归分析”是指分析因变量和自变量之间关系,回归分析的基本思想是: 虽然自变量和因变量之间没有严格的、确定性的函数关系,但可以设法找出最能代表它们之间关系的
毕业论文中的双变量回归分析并不简单,需要进行充分的研究和分析。如果您在撰写毕业论文中遇到困难,可以咨询导师或其他专业人士的意见,以确保研究结果的科学性和可靠性。
优质毕业论文问答知识库