• 回答数

    3

  • 浏览数

    124

兔了里个酱酱
首页 > 毕业论文 > 关于傅里叶变换的毕业论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

白羊座小叔

已采纳

今天的现代通信网课上讲到傅立叶变换,老师翻出了一些以前信号系统和通信原理课本里的概念和公式,突然感到既熟悉又陌生。也难怪,原本读研之前一直以为今后就会和这些东西说再见,而彻底地投入计算机和网络的世界中,以至于开学来苏州这边的时候,本科的教材一本都没带过来。如今突然再次用到,多少感慨涌入心头,又怀念起以前大二时盯着一本书的公式发呆的日子,呵呵。 毋庸置疑,信号与系统(Signals and Systems)这门课绝对是信息类专业的核心课程(没有之一。。。)有些同学可能会提通信原理,但是如果没有信号系统这门课作为支撑,那么通信原理就好像盖楼只用混凝土不用钢筋一样,空有内容,搭不起一个知识体系。而傅立叶变换自然就是其核心内容了。 由于手头没有书,这里只是凭借记忆和网上搜到的内容,写下我对傅立叶变换的一些学习体会,具体的内容以后还会陆续补充。希望能给没有学习过信号系统这门课的同学一些小小的帮助。(其实我也搞不懂现代通信网这门课怎么给这老师讲成了通信原理,所以写这些东西,主要是方便大家加深对这些概念的理解吧。。。) 记得当年的任课老师有一句口头禅:信号系统改变了我们的世界观。。。当然这有些夸张,但是从某些角度来说,并非毫无道理。我们平常接触的世界是一个可感知的世界,很多事物都可以由包含时间这一维度的某个函数来表示。如股票价格的涨跌,就是一个普通的函数f(t),其中t表示时间。同理,声音也可以用这个函数反映出其强度随时间的变化;另外,在离散信号中,如一幅图像,是一个二维信号f(x,y),这里的自变量x,y类似于上文的t,只不过由一维扩展到二维,由一个连续的时间变成了一串离散的序列。总而言之,现实世界中我们直观上看到信号,都可以称为“时域”信号。 信号系统这门课的贡献就是,它为我们展现了一种新的观察世界的角度,即“频域”。频域的度量称为频谱,频谱的横坐标为频率w(对应于上文的t),纵坐标就是频谱值。那么怎样实现从时域到频域的变换?大名鼎鼎的傅立叶变换(Fourier Transform)就是一种方法。 傅立叶变换公式如下:(*) 其中,w为频率,函数F(w)为频谱。傅立叶变换建立了从时域到频域的映射。 这里暂时不详细介绍公式,先看它的由来。 傅立叶,法国人,数学家,物理学家。1807年向巴黎科学院呈交《热的传播》论文,推导出著名的热传导方程,并在求解该方程时发现解函数可以由三角函数构成的形式表示,从而提出任一函数都可以展成三角函数的无穷级数傅立叶级数(即三角级数)、傅立叶分析等理论均由此创始。 在分析傅立叶变换之前,先引出复信号的概念。大家都知道复数包括实数和虚数,一个复数总可以表示成x=a+bj(j为虚单位)。同理,信号也分实虚,实信号即是平常看得见摸得着的信号,引入虚的概念后,就可以将复信号解释清楚了。 回到刚才的问题,实际上傅立叶变换建立的是“复”频域与时域的联系。上文说过,傅立叶发现任何一个函数f(t)都可以用很多个三角函数的和(**) 表示,其中w是三角函数的角频率。另外,这个表示方法是一定的,即总能找到,并且能严格逼近。 为什么说傅立叶变换建立了复频域和时域的联系?频域有和上面的三角函数又有什么联系?难道只是因为cos(wt)中的w名字叫做频率吗?显然不是。 根据欧拉公式,其中,w是角频率,j是虚数单位。 带入上文公式(**),于是傅立叶的这个发现就可以解释通了:任何一个时域的函数f(t),都可以表示成很多个复指数 、的和的形式,w恰好就是频谱中的频率。这样,傅立叶变换便建立了时域和复频域的联系。 将coswt和sinwt的公式带入傅立叶变换的定义式(*),即可得到cos(Wt)的频谱为F(w)=pi*[sigma(w-W)+sigma(w+W)];即是频谱两边对称的两个冲击信号。 这也是为什么原信号乘以正弦信号之后就可以被调制成高频信号。 上文(*)公式给出的傅立叶变换是连续时间傅立叶变换,而严格意义上的傅立叶变换分为几种形式(CFS,CTFT,DFS,DTFT),每一种对应的情况都不相同,公式也不一样,这里不再一一介绍。再说说为什么要进行傅立叶变换。举个例子,比如压缩电影、压缩照片,利用的就是人眼对某些频带以外的信号频谱反应不敏感的原理。将数据进行傅立叶变换,用滤波器过滤掉相对来说对人眼无用的高频和低频部分,就可以保证在不影响整体效果的情况下,最大程度地压缩图像数据。 不难想象,如果在时域上裁剪出这些数据的一部分,那数据的完整性将根本无法保证,比如将照片减去一半或是将影片头尾剪辑掉之类。然而在频域上的裁剪却可以大体上保证数据的质量,这正是频域的奇妙之处,它给我们提供了从另一个角度看世界的方法。

201 评论

qq810833606

我来帮你搞定

137 评论

莫奈小兔

傅里叶分析可分为傅里叶级数和傅里叶变换。傅里叶分析可以将任何周期函数看作是不同振幅,不同相位正弦波的叠加,一个矩形波在傅里叶变换后在频域中变为一条条幅值。 例如收音机接收到的信号是多个电台的信号波叠加,如果直接播放我们不能听到任何声音。收音机通过傅里叶变换将信号波分解为特定频率的信号,从而听到某个电台的节目。 傅里叶空间中的每个向量都可以表示为其一组基的无限线性组合,这就是傅里叶展开。这一组基互相正交,称为傅里叶基。 傅里叶级数就是将傅里叶空间中的一个向量通过基的线性组合的方式写出来(一个基的线性组合),每一个基的系数可以通过内积计算得到。 傅里叶级数的指数形式,通过欧拉公式将三角函数转换为指数函数,同时引入虚数i。 exp(ix)=cos(x)+isin(x) ,复平面的向量 (cos(x), isin(x)) 与 exp(ix) 等价(上述公式可用泰勒级数证明)。当 exp(ix) 中的 x 变成时间 t 时,随着时间的流逝,该向量就会在 2π 秒后旋转一圈,即 T=2π 。因此, exp(iwt) 是一个旋转的向量。傅里叶级数就从以三角函数作为基的线性组合就变为指数函数为基的线性组合。 当周期函数的周期趋于无穷时,无穷级数转换为积分,此时实数轴上的每个点都对应一个基,该积分就是这无限个基的“线性组合”。 正空间的晶格做傅里叶变换得到倒易空间(傅里叶空间),在正空间具有周期性的晶格在倒易空间变为倒格子(透射电镜下投影为二维点阵),而在正空间混乱的晶格在倒空间也将是混乱的。正空间表示时域,倒易空间表示频域。由于晶格的周期性,因此关于晶格的所有性质都可以经过傅里叶变换进行计算。

187 评论

相关问答

  • 关于毕业论文里的句子摘抄

    其实,不论谁进行论文查重检测最重要的目的之一,就是通过论文查重检测系统的检测结果来确定毕业生们写出来的论文内容是否存在学术不端行为。如果重复率过高,就代表着论文

    尼古丁00144 5人参与回答 2024-11-08
  • 关于傅里叶变换的毕业论文

    今天的现代通信网课上讲到傅立叶变换,老师翻出了一些以前信号系统和通信原理课本里的概念和公式,突然感到既熟悉又陌生。也难怪,原本读研之前一直以为今后就会和这些东西

    兔了里个酱酱 3人参与回答 2024-11-08
  • 傅立叶变换毕业论文参考文献

    傅立叶变换表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。 傅里叶变换可以将原来难以处理的时域信号转换成了易于分析的

    我是乾宝宝 4人参与回答 2024-11-06
  • 毕业论文关于茶叶综述的题目

    第一篇 连锁经营是近代产业革命带来的经济高速发展的产物,是社会化大生产的产物。1859年,世界上第一家具有现代意义的连锁店“大西洋与太平洋茶叶

    triangelrain 3人参与回答 2024-11-07
  • 关于茶叶营销的毕业论文题目

    可以研究茶叶中的茶多酚的含量,或者几种茶叶的有效成分含量对比。

    华科办公 2人参与回答 2024-11-08