网友:给你一篇参考一下:概率在生活中的应用由于新课程强调数学教育的基础性、现实性、大众性,重视素质教育与中考、高考的兼容性,概率统计在社会现实中具有很高的应用价值.在复习中要关注生活背景、社会现实、经济建设、科技发展等各个方面,并从中提炼出具有社会价值的数学应用背景。 应注意培养学生善于从普通语言中捕捉信息、将普通语言转化为数学语言的能力,使学生能以数学语言为工具进行数学思维与数学交流。有关概率的知识在生活中应用非常广泛。第一部分: 概念重难点 (1)了解必然发生的事件、不可能发生的事件、随机事件的特点.(2)在具体情境中了解概率的意义一点就透(1)有关概率的注意事项:a.概率是随机事件发生的可能性的大小的数量反映.b.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.(2)频率与概率的区别与联系:从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.生活中来你能指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件吗?1.通常加热到100°C时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是360°;5. 经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快. 第二部分: 列举法求概率重难点学会用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策.第三部分: 利用频率估计概率疑难分析(1)当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.(2)利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P.(3)利用频率估计出的概率是近似值.经典一例例: 某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1) 计算并完成表格:转动转盘的次数n10001000落在“铅笔”的次数m681111落在“铅笔”的频率 (2) 请估计,当 很大时,频率将会接近多少?(3) 转动该转盘一次,获得铅笔的概率约是多少?(4) 在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°) 解答:(1)、、、、、;(2);(3);(4)×360°≈248°.评注:(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率. 第四部分:概率在考证历史中的应用——考证《红楼梦》作者 数学思维的价值在于创意。复旦大学数学系李贤平教授关于红楼梦作者的工作一直引起我的关注。自从胡适作《红楼梦考证》以来,都认为曹雪芹作前80回,后40回为高鹗所续。《红楼梦》的作者是谁,当然由红学家来考证。但是我们是否可以用数学方法进行研究,并得出一些新的结果来?1987年,李贤平教授做了。一般认为,每个人使用某些词的习惯是特有的。于是李教授用陈大康先生对每个回目所用的47个虚字(之,其,或,亦……,呀,吗,咧,罢……;的,着,是,在,……;可,便,就,但,……,儿等)出现的次数(频率),作为《红楼梦》各个回目的数字标志,然后用数学方法进行比较分析,看看哪些回目出自同一人的手笔。最后李教授得出了许多新结果: 前80回与后40回之间有交叉。 前80回是曹雪芹据《石头记》写成,中间插入《风月宝鉴》,还有一些别的增加成分。 后40回是曹雪芹亲友将曹雪芹的草稿整理而成,宝黛故事为一人所写,贾府衰败情景当为另一人所写。 在平时的生活中,应要求学生多关心国家大事,了解信息社会,讲究联系实际,重视概率统计在生产、生活及科学中的应用,并加强对学生进行偶然性与必然性的对立统一观点的教育.具体还是自己还根据实际情况来写。
着科学的发展,数学在生活中的应用越来越广,生活的数学无处不在。而概率作为数学的一个重要部分,同样也在发挥着越来越广泛的用处。抽样调查,评估,彩票,保险等经常会遇到要计算概率的时候,举个例子在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里死亡的概率为,每个人一年付12元保险费,而在死亡的时候家属可以领取由保险公司支付的2000元,问保险公司盈利的概率是多少,公司获利不少于10000的概率是多少?这样的问题咋一看很难知道保险公司是否盈利,但经过概率统计的知识一计算就可以得知公司是几乎必定盈利的A={2500×12-2000X<0}={X>15}由此得知P=,而盈利10000以上的概率也有,以上的结果说明了为什么保险公司那样乐于开展保险业务的原因.除了保险,概率统计学对彩票也有有两个方面的应用 。据钱江晚报报道,彩票市场越来越火爆,据了解,南京某一期电脑福利彩票有一懂概率统计的彩民一个人中1个一等奖、3个二等奖、33个三等奖,有一期彩票有9注号码中一等奖,从而引发了无数彩民自己预测号码的愿望,概率统计方面的书籍也一下子走俏。许多平时见到符号就头疼的彩民也捧起概率书兴趣盎然地啃起来。东南大学经管院陈建波博士指出,概率书上讲的都是理论知识,一大堆数学计算公式,如何把概率书的理论运用到彩票选号中来,才是许多彩民关心的问题。实际上,概率统计学主要有两个方面的应用:一个方面是利用概率公式计算各种数字号码出现的概率值,然后选择最大概率值数字进行选号。举一个简单的例子,类似“1234567”七个数一直连续的彩票号码与非一直连续的号码出现的概率比例为:29:6724491(1:230000)左右,由于出现的概率值极低,因此一般不选这种连续号码。另一方面的应用是统计,即把以前所有中奖号码进行统计,根据统计得到的概率值来预测新的中奖号码,例如五区间选号法,就是根据统计进行选号的。南京的“专业”彩民则介绍一条选号规则———逆向选号法。从摇奖机的构造角度来说,它要保证每个数字中奖的概率都一样。虽然摇一次奖无法保证,摇100次奖也无法保证,但摇奖的次数越多,各个数字中奖的次数也必定越趋于平均。就像扔硬币,一开始就扔几次可能正反面出现的次数不一样,但随着扔的次数的增加,正反面出现的次数就会越来越接近。从这个角度考虑,在选号时就应该尽量选择前几次没中过奖的数字。这就是逆向选号法,即选择上一次或前几次没中奖的数字.......这也说明了概率的无所不在
概率,又称或然率、机会率、机率(几率)或可能性,它是概率论的基本概念。概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。越接近1,该事件更可能发生;越接近0,则该事件更不可能发生,其是客观论证,而非主观验证。事件发生的概率=事件可能发生方式的个数/结果的总数。概率论在生活中的应用场景很多。比如玩扑克,例如玩二十一点,当你牌是17点的时候,而对家牌面是十点,那明显他是二十点的概率比较大,因为十、勾,皇后,大王共16张牌接近三分之一的机会。概率论在一定的社会条件下,通过人类的社会实践和生产活动发展起来,被广泛应用于各个领域,在国民经济的生产和生活中起着重要的作用。正如英国逻辑学家和经济学家杰文斯(Jevons,1835-1882)所说:概率论是“生活真正的领路人,如果没有对概率的某种估计,我们就寸步难行,无所作为”。在日常生活中,同样不难发现,周围的许多事物都和概率有着千丝万缕的联系,下面将从几个具体实际问题来说明概率统计在生活中的应用。 一、数学期望在求解最大利润问题中的应用 如何获取最大利润不但成为商界追求的目标,同时也为越来越多的人所关注,许多数学模型也从概率角度利用期望求解最大利润问题,为问题的解决提供新的思路。下面就是一道应用期望探讨利润的问题。二、小概率原理在生活中的应用这不是一件东西不是一个测试,现在,这是小概率原理。实际生活中的小概率事件原理指导人无意中。因为人们总是坚持这样一个信念:小概率事件在实际测试几乎是不可能的,如果事实上真的发生了,人仍然抱着这样的想法,而是这一事件的前提下,改变了。如果一架飞机坠毁,乘客伤亡,飞机失事,是不可能的事故(尽管概率很小)。但为什么还是有人敢飞出差,旅行?这是因为我们仍然认为这件事是非常罕见的,如果它发生,它会由于天气原因,操作错误,机械故障,而不是承认它。但也有相反的情况:人们更愿意承认小概率事件发生。例如发行彩票过程中,尽管人们知道获胜的可能性不大,但人们的购买热情依然很高,有一个小概率事件有望在一次试验中发生(的奖金买一)运气。河历史悠久的概率和纵向发展的角度,可以看到概率和游戏密切相关。为在实际问题中的应用的一个小的概率。 然而,作为一门独立的学科,足迹的概率可以说已经深入到各个领域,应用于实际问题无处不在。特别是随着科学技术的飞速发展的今天,知识产业化。许多基础学科从幕后走到台前,和许多其他方面的概率或将发挥其应有的作用。如方差分析,回归分析等方面的内容,在医疗,军事等领域都发挥了最大的作用。认为挖掘概率人类能更好的潜力,做出最好的为人类服务。
概率论与数理统计课程的改革与实践论文
摘要: 讨论了概率论与数理统计课程教学改革的必要性与重要性,提出了课程改革的思路与原则,并总结了该课程改革与实践取得的效果。
Abstract: The necessity and importance of teaching reform of the course of probability and mathematical statistics were discussed, ideas and principles of curriculum reform were put forward, and the achieved effect of this curriculum’s reform and practice was summarized.
关键词: 概率论与数理统计;改革;实践
Key words: probability and mathematical statistics; reform; practice
概率论与数理统计是工程、人文、经济、社会等领域研究和处理随机现象的一门重要的随机数学,是目前数学专业大学本科阶段乃至其它理工类专业的唯一一门随机数学的必修课。自上个世纪六十年代引入大学课堂以来,它对于传承人类科学文明、培养人才的综合素质能力、解决实际问题的实践动手能力等起到了非常重要的作用。在信息社会高度发达的今天,随机数学的基本理论与方法作为信息采集、加工、利用的重要的理论基础和方法论基础,已经成为现代专业人才重要的必不可少的知识构成。文献[1-3]对该课程的改革与实践进行了探讨。本文就该课程的特点,结合我院(系)学生的特点就该课程改革与实践的必要性,具体思路与原则,以及改革实践的效果做一探讨。
1 概率论与数理统计课程教学改革的必要性与重要性
教学内容、手段、方法的陈旧反映出教育思想的落后,转变教育思想和更新教育观念是进行一切改革的先导。传统的数学教育理念重视教学过程的理论性,严谨性,逻辑性。但对于学生应用数学的理论和方法解决实际问题能力的培养从教和学两个侧面有所忽视。
现在,有一种流行的教育教学方法称为“案例教学”。“案例教学”就是通过实际问题的描述、假设、建模与求解,演示理论与方法的应用过程。数学上,这样的教学方式就是所谓的‘问题解决’的数学建模的思想。这种方法不拘泥于对理论和方法的阐述,更注重对理论与方法的实际应用过程的展示:包括问题的描述、所涉及的变量及其相互关系、问题的假设与简化、问题的数学模型的建立与求解。
信息社会的加速来临,在实际生活和科技工作中,海量、庞杂的数据不断产生,但是有用的信息并不会自动生成,它需要数学工作者利用数据采集、整理、分析与处理的工具,去发现有用的信息,以解决实际问题。数据采集与信息分析与处理的数学基础就是《概率论与数理统计》这门数学类专业的必修课程,这也是其它理工科专业的一门必修课程,只是对数学专业的`要求既注重理论又兼顾方法的实际应用,而对其它理工科专业,这门课程主要注重方法的应用。
但是,《概率论与数理统计》这门课程不同于以往学习的确定性数学,对于第一次接触这门课程的学生,理解起来会很困难,更不用说去利用它去进行统计数据的采集、整理、处理、分析等。因此,单从这点考虑,我们就有必要对其教学方法、手段等进行改革。从本门课程的应用目的角度来考虑,也必须进行改革,以增加实践性教学环节,培养学生应用概率论与数理统计的理论和方法解决实际问题的能力。
从培养学生利用数学的理论和方法、基于统计数据,建立和求解数学模型的能力的角度看,这完全符合现代大众化高等教育的目的,也符合我校的办学指导思想。
《概率论与数理统计》是其它随机数学的理论和方法的基础,这些课程是:多元统计分析、时间序列分析、随机过程,基于支持向量机的现代非参数统计学习方法等,为了这些知识和方法的学习与应用,我们也必须改变教学方式,为学生打下坚实继续学习的基础。
2 概率论与数理统计课程教学改革的思路与原则
通过以上的分析,我们认为概率论与数理统计课程的改革必须首先改变教学方法,抛弃那种古板的、填鸭式的、纯粹的重视逻辑推理而不重视应用的传统的教学观念,而采取不仅重视理论与方法的学习,为后继课程的学习打下良好基础,又能激发学生学习兴趣,同时还能培养学生应用所学理论和方法解决实际问题的能力的培养。
因此,概率论与数理统计课程的改革是一项系统工程,既要考虑课程本身理论与方法的学习,还要也兼顾后继课程的学习(有些课程是研究生的必修课),又要考虑学生应用理论与方法解决实际问题能力的培养,还要使得学生学习起来兴趣盎然。应用系统工程原理,从理论、实践、计算能力等全方位改革和建设,不能只重视某一个环节,而应从整体上思考。
在学时有限的约束条件下,我们必须改革教学内容,教学方法和教学手段,以期达到预期的改革目的。改革过程必须培养一批从事《概率论与数理统计》课程的课堂教学、实验教学的人才,积累改革的成果,不断总结经验。改革过程不会一番风顺,遇到非议也是可以理解的。但是,改革的决策一旦确定,就要毫不犹豫的进行下去。
3 概率论与数理统计课程教学改革的内容与措施
首先确定合理的教学学时,经过大家集思广益,制定了相应的教学大纲,使教学改革有法可依。为了达到上述改革目标,我们对教材的内容进行必要的增加和删减。由于,《概率论与数理统计》课程是大学生接触的第一门研究随机现象及其规律的数学学科,不同于以往的确定性数学,学生理解起来是相当困难的。为此,考虑到实际课时和课程的难度,在课堂教学中,借助于多媒体技术和计算机编程技术,增加了对一些随机现象的直观演示。删除掉一些陈旧的知识,比如关于一些定理的证明,或者保留这些证明,作为自学内容,提供给有能力学习的学生。这也起到因材施教的目的。经过多年的实践,编写了自己的教材《概率论与数理统计》(陕西师范大学出版社出版),该教材是国家面向21世纪规划教材。
为了达到培养学生利用计算机和数学软件,以及应用概率论与数理统计的理论和方法解决实际问题的能力,我们在自己编写的教材中,首次引入了SAS(Statistical Analysis Systems)高级程序设计语言。
为了使得课堂教学生动、有趣、直观以及指导学生的学习,我们研制开发了多媒体课件,并编写了与本门课程配套的课程学习指导教材。
为了达到培养学生的收集数据、整理数据、建立数学模型、利用相关的理论与方法解决实际问题的能力之目的,我们增加实践性教学环节。从1997级开始,我们在全国首次开设了《概率论与数理统计》的实验教学环节,并且编写相应实验教学大纲和实验指导书,使实验课有纲可循,有事可做而不流于形式。
为了培养学生的综合应用随机数学解决实际问题的能力,我们构建了以《概率论与数理统计》为核心的课程群,包括《多元统计分析》、《时间序列分析》、《教育测量与统计学》、《随机过程》、《数学模型与数学实验》、《数学软件》等选修课程,大大丰富了学生随机数学的理论与方法解决实际问题的数据处理与分析的能力及数学建模能力。
为了开拓学生的视野,在学年论文和毕业论文中,我们加强指导,向学生介绍了一种现代非参数统计学习方法:《基于支持向量机的统计学习方法》,将这种方法用于相关关系的学习中。
为了达到培养学生学习《概率论与数理统计》课程及其课程群的学习及其解决实际问题的能力,我们连续多年组织了对我校参加全国大学生数学建模竞赛的学生的培训工作,特别是随机数学解决实际问题能力的培养。
由于我们改革教学的内容,增加了实验教学环节,并注重学生平时能力的培养,所以我们改革考核方式:学生平时作业及考勤占总成绩的20%,实验占20%,课程考试占60%。
为了传承我们的改革成果,我们注意在改革中积累经验,培养人才,使我们的改革有了传承、继续推进的后备人才,形成本门课程及其课程群的年龄、学历层次和职称结构合理的教师队伍,有博士1个,硕士3个,学士5个;教授1个,副教授6个,讲师2个。
4 概率论与数理统计课程教学改革与实践的效果
通过几年来的改革实践,概率论与数理统计的教学取得了较显著的效果。教学内容、方法手段的改革增加了学生学习该课程的兴趣,使学生真正体会到该课程的内容在工农业生产以及科学研究中的应用价值,充分调动了学生学习的主动性,激发了学生的创造性思维,增加了学生应用概率统计方法解决实际问题的能力。该课程的改革与实践取得了良好的教学效果,提高了教学质量,得到了学生的认可和赞同,问卷调查表明90%以上的学生对现在的教学方式和考试方法给予肯定,大多数学生都认为概率统计课在各学科中有较重要的应用。说明同学们对该门课程的思想方法和应用性有了较深刻的认识,教学改革的总体方向是正确的。
随着本课程及相关课程的深入改革,有许多学生在学年论文及毕业论文的选题上倾向于采用《概率论与数理统计》课程的理论与方法。与本课程相关的多篇毕业论文被评为校级优秀论文。
此外,本课程的任课教师还积极组织、培训、指导学生参加全国大学生数学建模竞赛并取得优异成绩。
参考文献:
[1]朱松涛.师专数学系《概率论与数理统计》课程教学的改革实践[J].数学通报,1998,(4).
[2]邓华玲等.概率论与数理统计课程的改革与实践[J].大学数学,2004,(1).
[3]陈新美等.《概率论与数理统计》教学改革与实践[J].湖南科技学院学报,2006,(11).
概率论与数理统计课程的改革与实践论文
摘要: 讨论了概率论与数理统计课程教学改革的必要性与重要性,提出了课程改革的思路与原则,并总结了该课程改革与实践取得的效果。
Abstract: The necessity and importance of teaching reform of the course of probability and mathematical statistics were discussed, ideas and principles of curriculum reform were put forward, and the achieved effect of this curriculum’s reform and practice was summarized.
关键词: 概率论与数理统计;改革;实践
Key words: probability and mathematical statistics; reform; practice
概率论与数理统计是工程、人文、经济、社会等领域研究和处理随机现象的一门重要的随机数学,是目前数学专业大学本科阶段乃至其它理工类专业的唯一一门随机数学的必修课。自上个世纪六十年代引入大学课堂以来,它对于传承人类科学文明、培养人才的综合素质能力、解决实际问题的实践动手能力等起到了非常重要的作用。在信息社会高度发达的今天,随机数学的基本理论与方法作为信息采集、加工、利用的重要的理论基础和方法论基础,已经成为现代专业人才重要的必不可少的知识构成。文献[1-3]对该课程的改革与实践进行了探讨。本文就该课程的特点,结合我院(系)学生的特点就该课程改革与实践的必要性,具体思路与原则,以及改革实践的效果做一探讨。
1 概率论与数理统计课程教学改革的必要性与重要性
教学内容、手段、方法的陈旧反映出教育思想的落后,转变教育思想和更新教育观念是进行一切改革的先导。传统的数学教育理念重视教学过程的理论性,严谨性,逻辑性。但对于学生应用数学的理论和方法解决实际问题能力的培养从教和学两个侧面有所忽视。
现在,有一种流行的教育教学方法称为“案例教学”。“案例教学”就是通过实际问题的描述、假设、建模与求解,演示理论与方法的应用过程。数学上,这样的教学方式就是所谓的‘问题解决’的数学建模的思想。这种方法不拘泥于对理论和方法的阐述,更注重对理论与方法的实际应用过程的展示:包括问题的描述、所涉及的变量及其相互关系、问题的假设与简化、问题的数学模型的建立与求解。
信息社会的加速来临,在实际生活和科技工作中,海量、庞杂的数据不断产生,但是有用的信息并不会自动生成,它需要数学工作者利用数据采集、整理、分析与处理的工具,去发现有用的信息,以解决实际问题。数据采集与信息分析与处理的数学基础就是《概率论与数理统计》这门数学类专业的必修课程,这也是其它理工科专业的一门必修课程,只是对数学专业的`要求既注重理论又兼顾方法的实际应用,而对其它理工科专业,这门课程主要注重方法的应用。
但是,《概率论与数理统计》这门课程不同于以往学习的确定性数学,对于第一次接触这门课程的学生,理解起来会很困难,更不用说去利用它去进行统计数据的采集、整理、处理、分析等。因此,单从这点考虑,我们就有必要对其教学方法、手段等进行改革。从本门课程的应用目的角度来考虑,也必须进行改革,以增加实践性教学环节,培养学生应用概率论与数理统计的理论和方法解决实际问题的能力。
从培养学生利用数学的理论和方法、基于统计数据,建立和求解数学模型的能力的角度看,这完全符合现代大众化高等教育的目的,也符合我校的办学指导思想。
《概率论与数理统计》是其它随机数学的理论和方法的基础,这些课程是:多元统计分析、时间序列分析、随机过程,基于支持向量机的现代非参数统计学习方法等,为了这些知识和方法的学习与应用,我们也必须改变教学方式,为学生打下坚实继续学习的基础。
2 概率论与数理统计课程教学改革的思路与原则
通过以上的分析,我们认为概率论与数理统计课程的改革必须首先改变教学方法,抛弃那种古板的、填鸭式的、纯粹的重视逻辑推理而不重视应用的传统的教学观念,而采取不仅重视理论与方法的学习,为后继课程的学习打下良好基础,又能激发学生学习兴趣,同时还能培养学生应用所学理论和方法解决实际问题的能力的培养。
因此,概率论与数理统计课程的改革是一项系统工程,既要考虑课程本身理论与方法的学习,还要也兼顾后继课程的学习(有些课程是研究生的必修课),又要考虑学生应用理论与方法解决实际问题能力的培养,还要使得学生学习起来兴趣盎然。应用系统工程原理,从理论、实践、计算能力等全方位改革和建设,不能只重视某一个环节,而应从整体上思考。
在学时有限的约束条件下,我们必须改革教学内容,教学方法和教学手段,以期达到预期的改革目的。改革过程必须培养一批从事《概率论与数理统计》课程的课堂教学、实验教学的人才,积累改革的成果,不断总结经验。改革过程不会一番风顺,遇到非议也是可以理解的。但是,改革的决策一旦确定,就要毫不犹豫的进行下去。
3 概率论与数理统计课程教学改革的内容与措施
首先确定合理的教学学时,经过大家集思广益,制定了相应的教学大纲,使教学改革有法可依。为了达到上述改革目标,我们对教材的内容进行必要的增加和删减。由于,《概率论与数理统计》课程是大学生接触的第一门研究随机现象及其规律的数学学科,不同于以往的确定性数学,学生理解起来是相当困难的。为此,考虑到实际课时和课程的难度,在课堂教学中,借助于多媒体技术和计算机编程技术,增加了对一些随机现象的直观演示。删除掉一些陈旧的知识,比如关于一些定理的证明,或者保留这些证明,作为自学内容,提供给有能力学习的学生。这也起到因材施教的目的。经过多年的实践,编写了自己的教材《概率论与数理统计》(陕西师范大学出版社出版),该教材是国家面向21世纪规划教材。
为了达到培养学生利用计算机和数学软件,以及应用概率论与数理统计的理论和方法解决实际问题的能力,我们在自己编写的教材中,首次引入了SAS(Statistical Analysis Systems)高级程序设计语言。
为了使得课堂教学生动、有趣、直观以及指导学生的学习,我们研制开发了多媒体课件,并编写了与本门课程配套的课程学习指导教材。
为了达到培养学生的收集数据、整理数据、建立数学模型、利用相关的理论与方法解决实际问题的能力之目的,我们增加实践性教学环节。从1997级开始,我们在全国首次开设了《概率论与数理统计》的实验教学环节,并且编写相应实验教学大纲和实验指导书,使实验课有纲可循,有事可做而不流于形式。
为了培养学生的综合应用随机数学解决实际问题的能力,我们构建了以《概率论与数理统计》为核心的课程群,包括《多元统计分析》、《时间序列分析》、《教育测量与统计学》、《随机过程》、《数学模型与数学实验》、《数学软件》等选修课程,大大丰富了学生随机数学的理论与方法解决实际问题的数据处理与分析的能力及数学建模能力。
为了开拓学生的视野,在学年论文和毕业论文中,我们加强指导,向学生介绍了一种现代非参数统计学习方法:《基于支持向量机的统计学习方法》,将这种方法用于相关关系的学习中。
为了达到培养学生学习《概率论与数理统计》课程及其课程群的学习及其解决实际问题的能力,我们连续多年组织了对我校参加全国大学生数学建模竞赛的学生的培训工作,特别是随机数学解决实际问题能力的培养。
由于我们改革教学的内容,增加了实验教学环节,并注重学生平时能力的培养,所以我们改革考核方式:学生平时作业及考勤占总成绩的20%,实验占20%,课程考试占60%。
为了传承我们的改革成果,我们注意在改革中积累经验,培养人才,使我们的改革有了传承、继续推进的后备人才,形成本门课程及其课程群的年龄、学历层次和职称结构合理的教师队伍,有博士1个,硕士3个,学士5个;教授1个,副教授6个,讲师2个。
4 概率论与数理统计课程教学改革与实践的效果
通过几年来的改革实践,概率论与数理统计的教学取得了较显著的效果。教学内容、方法手段的改革增加了学生学习该课程的兴趣,使学生真正体会到该课程的内容在工农业生产以及科学研究中的应用价值,充分调动了学生学习的主动性,激发了学生的创造性思维,增加了学生应用概率统计方法解决实际问题的能力。该课程的改革与实践取得了良好的教学效果,提高了教学质量,得到了学生的认可和赞同,问卷调查表明90%以上的学生对现在的教学方式和考试方法给予肯定,大多数学生都认为概率统计课在各学科中有较重要的应用。说明同学们对该门课程的思想方法和应用性有了较深刻的认识,教学改革的总体方向是正确的。
随着本课程及相关课程的深入改革,有许多学生在学年论文及毕业论文的选题上倾向于采用《概率论与数理统计》课程的理论与方法。与本课程相关的多篇毕业论文被评为校级优秀论文。
此外,本课程的任课教师还积极组织、培训、指导学生参加全国大学生数学建模竞赛并取得优异成绩。
参考文献:
[1]朱松涛.师专数学系《概率论与数理统计》课程教学的改革实践[J].数学通报,1998,(4).
[2]邓华玲等.概率论与数理统计课程的改革与实践[J].大学数学,2004,(1).
[3]陈新美等.《概率论与数理统计》教学改革与实践[J].湖南科技学院学报,2006,(11).
数据,,有,,
数理统计法在论文中要实际分析解决问题。
论文思路:
数学统计是使用数学统计分析方法解决实际问题的学科。它们是数学研究领域的一类分支,可以观察事物以确定基本规律这些规律是现象的根源,并利用统计数据作出预测。
数学统计已成为各种学科发展的一个重要因素,通过选择适当的统计分析方法,可以深入分析试验产生的元数据,从中提取模式,并将其用作监测活动的指南。通过数据分析,可以获得详细的产品信息,并在生产过程中严格控制多个不同的链接。要将数学统计学科应用于现实。
概率论与数理统计是随机数学的重要理论分支,具有深厚的实际应用背景,是数学建模的重要理论之一。
鉴于我国高校对应用型和创新型人才培养的实际需求,以该课程部分知识点的实际教学为例,介绍在“概率论与数理统计”课堂教学中,将数学模型思想融入课程,即将实际问题结合于理论知识,以达到使学生了解数学理论的实际应用,同时加深对基础知识的理解与记忆的目的。实践表明教学效果显著。
数理统计起源发展:
数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效的收集、整理和分析受随机因素影响的数据,并对所考虑的问题作出推断或预测,为采取某种决策和行动提供依据或建议。
数理统计起源于人口统计、社会调查等各种描述性统计活动。
公元前2250年,大禹治水,根据山川土质,人力和物力的多寡,分全国为九州;殷周时代实行井田制,进行了土地与户口的统计;春秋时代常以兵车多寡论诸侯实力,可见已进行了军事调查和比较;汉代全国户口与年龄的统计数字有据可查;明初编制了黄册与鱼鳞册,黄册乃全国户口名册,鱼鳞册系全国土地图籍,绘有地形,完全具有现代统计图表的性质。
可见,我国历代对统计工作非常重视,只是缺少系统研究,未形成专门的著作。
在西方各国,统计工作开始于公元前3050年,埃及建造金字塔,为征收建筑费用,对全国人口进行普查和统计,到了亚里士多德时代,统计工作开始往理性演变。这时,统计在卫生、保险、国内外贸易、军事和行政管理方面的应用,都有详细的记载,统计一词,就是从意大利一词逐步演变而成的。
数理统计的发展大致可分为古典时期、近代时期和现代时期三个阶段。
1、高技术产业产值影响因素的研究2、关于和谐社会统计指标的初步研究3、CCA研究我国产业结构的区域差异对经济的影响4、基于单因素序列相关面板数据的实证分析5、基于空间面板数据的中国FDI统计分析6、基于排队论在杭州公交站点停车位的优化及实证分析7、基于统计方法的股票投资价值分析8、某某市2019年工业发展状况的统计分析9、近30年31省市城镇居民恩格尔系数的统计分析10、近30年31省市农村居民恩格尔系数的统计分析11、近三十年中国经济发展趋势的实证分析12、林业科技对经济的贡献率美联储量化13、MMC排队模型在收费站排队系统中的应用14、财政收入影响因素的研究15、城市发展对二氧化碳排放的影响学术堂提供更多论文知识
可以选领域很窄的,也可以选很热的话题,比如,大数据和经济的关系,和人的关系,大数据安全问题,统计这一类的问题有很多可以写,关键是统计的内容要进行一定的调研。
应用统计学是经济管理类专业一门专业必修基础课,能帮助管理者高效准确地进行数据分析,进行管理决策。下面是我为大家整理的浅谈应用统计学论文,供大家参考。
《 浅谈统计学在企业中的应用 》
在当今企业经营中,经常会把 企业管理 体制、组织形式、经营方式等看成企业管理,其实对于企业来说,统计工作是非常重要的,但是常常会被企业管理者所忽略,在企业管理中,经营方式的是否有效,对企业是否适应市场经济要求,能否创造更高的经济效益,统计学都具有重要的影响和意义,因此,强化企业统计工作,无论是对企业的经营,还是管理,都具有重大的意义。
1 统计工作的意义与作用
统计工作是指对社会经济现象数量方面进行搜集,整理和分析工作的总称,它是一种社会调查研究活动。统计信息是按国家统计制度采集的规范的、系统的信息、是覆盖面最广、综合性最强的信息,因而是社会经济信息的主体,是政府机关和企事业单位领导了解情况,研究问题、进行科学决策的重要参考依据。
统计工作是制定 企业战略 决策和计划的重要依据,当一个企业建立了一套既科学合理又行之有效的统计工作制度,便可以提供可靠的统计数据、进行有效的分析和科学的预测,首先它可以反映出企业规模,其次可以反映企业结构。从规模上,它可以反映企业的人员规模、生产规模、资产规模和盈亏规模等;从结构上,它可以反映企业的人员结构、产业结构、技术结构和质量结构等。
2 统计 方法 的应用
企业中概率论的应用
在我国当前的市场经济条件下,通常来说一个企业的经营和销售状况并不是由经营者的主观意愿决定的,它是由很多的不可控制因素影响的。比方说,某一商场在一定时间内有多少位顾客光临;这些顾客中有多少位进行了真正的购物活动;每位顾客在进行购物时,一共花费了多少等等问题。要解决这些问题,都需要利用概率论的方法进行分析,所以,在商业企业中,概率论有着广阔的应用。
企业中数理统计分析方法的应用
商品市场占有率的问题
比方说,在某一城市的四家电器商场中,对手机销售情况进行抽样调查,调查结果为:一个星期内一共销售手机数量为2000部,其中,某一个品牌的手机销售数为214部,通过数理统计中的分析方法,我们可以在把握度非常高的情况下,得出这一品牌手机在市场中的占有率在~之间。
调整 措施 效果的显著性
比方说在某一超市中,商家为了增加自身的销售情况,调整了销售方式和销售人员,然后对调整后的日销售额进行随机抽选,选出其中的9d,得到该超市的平均日销售额为60万。根据原来的统计显示,调整前超市的日销售额为52万,我们假设超市的日销售额服从正态分布,调整后的效果不能简单的以调整后的60万日销售额来进行判断,而是应该按照假设检验的思想和方法来进行判断。
3 当前部分企业统计工作中存在的问题
统计工作在企业中的重要性都有目共睹,但是多方面原因,很多企业统计工作的制度建立的还不够完善,主要存在以下几个方面的问题:
(1)统计数据的准确性不高,在部分企业中,统计数据的虚假成分比较高。
(2)我国部分企业其统计指标还是延续计划经济体制下设置的指标体系,没有参照国际上成熟的统计指标与统计口径,指标单一,不能跟上时代步伐。
(3)由于国家对其统计工作的投入几乎微乎其微,再加上部分企业自身对统计工作投入不足,对统计工作的重要性认识也不足,为了提高经济效益,减少人力资源投入,很多中小企业都没有设专职统计人员,而是以会计人员代替或兼职。对统计工作也不够重视。
(4)很多企业对信息化建设投资不足,对统计工作也不够重视,因此,这些企业的统计工作既没有专用统计管理系统,也没有统计专用计算机,统计质量与效率很低。
4 完善企业统计工作的几项措施
目前政府和大部分企业的急需解决的是如何解决企业统计工作中存在的一些问题,充分发挥企业统计工作的重要作用。从企业自身的角度来完善其统计工作主要有以下几项措施:
(1)要强化统计工作的重要地位,要想方设法得到企业领导的重视,让他们认识到统计工作的价值和重要性。
(2)加强企业统计队伍的建设与稳定,既要做好人才引进工作,根据自己实际发展的需要,确定统计人才引进的类型、层次及数量;又要注重现有人才的培养投资,建立完善的留人、用人机制,最大限度地发挥统计人员的工作积极性和主观能动性。
(3)企业统计人员要有危机感,必须与时俱进,加强学习,尤其是加强统计业务、经济管理、法律法规等知识的学习,不断提高自己的业务水平,才能适应企业和社会发展的需要,跟上时代前进的步伐。
(4)企业统计手段落后的现状已不适应社会发展的需要,各企业应尽快创造条件,加大资金投入,加快企业统计手段现代化建设,配备计算机并运用计算机处理统计信息,提高数据的准确性、时效性。
5 结语
在当代日益竞争剧烈的市场经济中,统计学是现代企业实行科学管理和监督企业经营活动的重要手段,也是现代企业制定经营政策的重要依据。提高企业的的经营效益和适应社会主义市场经济要求是现代企业管理体制、经营方法和运行机制的有效保障,科学的数据统计工作能够促进现代企业管理政策的实行,为企业管理找到切入点。加强企业的统计工作,落实统计工作的应用对企业发展有着重大而又长远的意义。
《浅谈 Excel 在统计学中的应用 》
摘要: 文章 以Excel 2003为例,介绍了其在 统计学方面的典型 应用,即数据库统计函数与数据透视表、统计指数。其中,在对统计指数的应用分析中还引入了典型实例,更加直观的介绍了Excel强大的统计功能。
关键词:Excel 数据库统计函数 数据透视表 统计指数
前言:统计学是一门关于用科学的方法收集、整理、汇总、描述和分析数据资料,并在此基础上进行推断和决策的科学。狭义的统计用来统指数据或者从数据中得到的一些数字。从统计的定义可以看出,统计的关键在于对数据的分析与加工,而Excel强大的数据分析功能则恰恰与统计所要处理的问题相适应,因此从Excel产生之初便被广泛地应用于统计中,而专为统计分析所开发的各种宏更是使得Excel成为统计分析中一种实用而高效的工具。虽然SPSS、SAS等专业统计 软件在某些方面具有更为强大的统计分析功能,但其或者需要专业的编程,或者需要高昂的价格,因此普及性远远不如Excel。下面以Excel 2003为例,介绍一下其在统计学方面的典型应用。
1.数据库统计函数与数据透视表
Excel作为电子表格软件,其数据结构的核心是单元格和单元格区域,因此Excel同数据库软件相同都是 管理处理一批有规律的数据。基于Excel的行列结构,在 工作表中按照标准的数据库规范对数据进行处理,这也被称为Excel的内部数据库技术,通过创建Excel的内部数据库,可以通过数据库函数实现对数据的统计分析。
数据库统计函数
在建立内部数据库的基础上,Excel中专门包含了一组对存储在数据清单或数据库中的数据进行统计运算的工作表函数,这些函数统称为数据库函数即Dfunctions。其中每个函数一般对应三个参数database、field和criteria,这些参数对应函数所使用的工作表区域,利用这些函数可以在日常统计工作中进行一些基本的统计运算。
Dfunctions具有相同的语法格式:Dfunctions(database,field,criteria)。其中:
①Dfunctions为数据库函数的名称,在Excel中总共有12个数据库函数;
②database为构成数据清单和数据库的单元格区域,数据库是包含一组相关数据的列表,其中包含相关信息的行为记录,而包含数据的列为字段。列表的第一行包含着每一列的标志项,为函数所使用的数据列或称作字段,数据清单中的数据列应位于第一行且具有标志项;
③field可以为文本,即两端带引号的标志项,如“类别”、“生产商”,也可以为数据清单中数据列的位置,如“1”表示第一列,“2”表示第二列。field也可省略,省略后函数将返回数据清单中所有满足条件的值;
④criteria为一组包含给定条件的单元格区域。可以为参数 criteria 指定任意区域,只要它至少包含一个列标志和列标志下方用于设定条件的单元格。
数据透视表
数据透视表是Excel中的一项重要功能,对于统计来说更是十分重要。由于Excel的工作表仅仅能提供一个由行和列组成的二元的数据结构,当需要在统计中反映多维的问题时,就需要用到数据透视表功能,采用数据透视表的“透视”,就可以在有限的二位数据平面里表达三维的概念,而且结合了数据透视图功能的数据透视表更是使得可以快速的形成特定要求的统计图表,并可以随时按要求变化图表的显示效果,实现有效的统计分析和统计绘图。
2.统计指数
在统计中,指数是概括一个基础变量或一组变量的相对变化的单一描述统计量。指数之所以有其广泛的应用,主要是因为其存在以下优点:首先单个变量对应基础数字往往太大,而指数化后容易观察;其次绝对数字的变化较难掌握,而运用相对数字表示的指数能更直观地看出其变化;最为重要的是许多时候由于组成指数的一组商品的相对变化比例不同,此时采用指数可以概括一组商品的综合变化。如通过股价指数可以反映股市行情总的变化状况,通过消费价格指数(CPI)可以反映居民主要消费资料价格的总变动。
例如,利用Excel求同等加权指数:假设选取表3-1中6种主要消费品来计算消费指数,试分别计算同等加权消费价格指数和同等加权消费数量指数。
要计算同等加权的消费价格指数和消费数量指数,具 体操 作步骤如下:①新建一工作表,“例”,设定表头为“同等加权指数”,输入表4-1中已知数据;②按照公式求同等加权价格指数,单击B11单元格,在编辑栏中输入“=SUM(C4:C9)/SUM(B4:B9)”,完成后按回车键;③按照公式求同等加权数量指数,单击B13单元格,在编辑栏中输入“=SUM(E4:E9)/SUM(D4:D9)”,完成后按回车键。
结束语:
Execl在统计学方面的应用还有很多,如概率分布图、抽样分布、参数估计、假设检验、回归分析与预测以及时间序列分析等,其强大的统计功能可以满足 经济学、 医学、气象、 农业等各个领域的数据分析,为人们的分析决策提供可靠的参考,且随着Excel版本的不断升级,其功能也日趋完善,有着广阔的应用前景。
有关浅谈应用统计学论文推荐:
1. 浅谈统计学教育分析论文
2. 统计学分析论文
3. 浅谈统计学论文论文
4. 浅谈统计学专业相关论文
5. 浅谈统计学调查相关论文
统计学选问题关键所在的
概率论与数理统计课程的改革与实践论文
摘要: 讨论了概率论与数理统计课程教学改革的必要性与重要性,提出了课程改革的思路与原则,并总结了该课程改革与实践取得的效果。
Abstract: The necessity and importance of teaching reform of the course of probability and mathematical statistics were discussed, ideas and principles of curriculum reform were put forward, and the achieved effect of this curriculum’s reform and practice was summarized.
关键词: 概率论与数理统计;改革;实践
Key words: probability and mathematical statistics; reform; practice
概率论与数理统计是工程、人文、经济、社会等领域研究和处理随机现象的一门重要的随机数学,是目前数学专业大学本科阶段乃至其它理工类专业的唯一一门随机数学的必修课。自上个世纪六十年代引入大学课堂以来,它对于传承人类科学文明、培养人才的综合素质能力、解决实际问题的实践动手能力等起到了非常重要的作用。在信息社会高度发达的今天,随机数学的基本理论与方法作为信息采集、加工、利用的重要的理论基础和方法论基础,已经成为现代专业人才重要的必不可少的知识构成。文献[1-3]对该课程的改革与实践进行了探讨。本文就该课程的特点,结合我院(系)学生的特点就该课程改革与实践的必要性,具体思路与原则,以及改革实践的效果做一探讨。
1 概率论与数理统计课程教学改革的必要性与重要性
教学内容、手段、方法的陈旧反映出教育思想的落后,转变教育思想和更新教育观念是进行一切改革的先导。传统的数学教育理念重视教学过程的理论性,严谨性,逻辑性。但对于学生应用数学的理论和方法解决实际问题能力的培养从教和学两个侧面有所忽视。
现在,有一种流行的教育教学方法称为“案例教学”。“案例教学”就是通过实际问题的描述、假设、建模与求解,演示理论与方法的应用过程。数学上,这样的教学方式就是所谓的‘问题解决’的数学建模的思想。这种方法不拘泥于对理论和方法的阐述,更注重对理论与方法的实际应用过程的展示:包括问题的描述、所涉及的变量及其相互关系、问题的假设与简化、问题的数学模型的建立与求解。
信息社会的加速来临,在实际生活和科技工作中,海量、庞杂的数据不断产生,但是有用的信息并不会自动生成,它需要数学工作者利用数据采集、整理、分析与处理的工具,去发现有用的信息,以解决实际问题。数据采集与信息分析与处理的数学基础就是《概率论与数理统计》这门数学类专业的必修课程,这也是其它理工科专业的一门必修课程,只是对数学专业的`要求既注重理论又兼顾方法的实际应用,而对其它理工科专业,这门课程主要注重方法的应用。
但是,《概率论与数理统计》这门课程不同于以往学习的确定性数学,对于第一次接触这门课程的学生,理解起来会很困难,更不用说去利用它去进行统计数据的采集、整理、处理、分析等。因此,单从这点考虑,我们就有必要对其教学方法、手段等进行改革。从本门课程的应用目的角度来考虑,也必须进行改革,以增加实践性教学环节,培养学生应用概率论与数理统计的理论和方法解决实际问题的能力。
从培养学生利用数学的理论和方法、基于统计数据,建立和求解数学模型的能力的角度看,这完全符合现代大众化高等教育的目的,也符合我校的办学指导思想。
《概率论与数理统计》是其它随机数学的理论和方法的基础,这些课程是:多元统计分析、时间序列分析、随机过程,基于支持向量机的现代非参数统计学习方法等,为了这些知识和方法的学习与应用,我们也必须改变教学方式,为学生打下坚实继续学习的基础。
2 概率论与数理统计课程教学改革的思路与原则
通过以上的分析,我们认为概率论与数理统计课程的改革必须首先改变教学方法,抛弃那种古板的、填鸭式的、纯粹的重视逻辑推理而不重视应用的传统的教学观念,而采取不仅重视理论与方法的学习,为后继课程的学习打下良好基础,又能激发学生学习兴趣,同时还能培养学生应用所学理论和方法解决实际问题的能力的培养。
因此,概率论与数理统计课程的改革是一项系统工程,既要考虑课程本身理论与方法的学习,还要也兼顾后继课程的学习(有些课程是研究生的必修课),又要考虑学生应用理论与方法解决实际问题能力的培养,还要使得学生学习起来兴趣盎然。应用系统工程原理,从理论、实践、计算能力等全方位改革和建设,不能只重视某一个环节,而应从整体上思考。
在学时有限的约束条件下,我们必须改革教学内容,教学方法和教学手段,以期达到预期的改革目的。改革过程必须培养一批从事《概率论与数理统计》课程的课堂教学、实验教学的人才,积累改革的成果,不断总结经验。改革过程不会一番风顺,遇到非议也是可以理解的。但是,改革的决策一旦确定,就要毫不犹豫的进行下去。
3 概率论与数理统计课程教学改革的内容与措施
首先确定合理的教学学时,经过大家集思广益,制定了相应的教学大纲,使教学改革有法可依。为了达到上述改革目标,我们对教材的内容进行必要的增加和删减。由于,《概率论与数理统计》课程是大学生接触的第一门研究随机现象及其规律的数学学科,不同于以往的确定性数学,学生理解起来是相当困难的。为此,考虑到实际课时和课程的难度,在课堂教学中,借助于多媒体技术和计算机编程技术,增加了对一些随机现象的直观演示。删除掉一些陈旧的知识,比如关于一些定理的证明,或者保留这些证明,作为自学内容,提供给有能力学习的学生。这也起到因材施教的目的。经过多年的实践,编写了自己的教材《概率论与数理统计》(陕西师范大学出版社出版),该教材是国家面向21世纪规划教材。
为了达到培养学生利用计算机和数学软件,以及应用概率论与数理统计的理论和方法解决实际问题的能力,我们在自己编写的教材中,首次引入了SAS(Statistical Analysis Systems)高级程序设计语言。
为了使得课堂教学生动、有趣、直观以及指导学生的学习,我们研制开发了多媒体课件,并编写了与本门课程配套的课程学习指导教材。
为了达到培养学生的收集数据、整理数据、建立数学模型、利用相关的理论与方法解决实际问题的能力之目的,我们增加实践性教学环节。从1997级开始,我们在全国首次开设了《概率论与数理统计》的实验教学环节,并且编写相应实验教学大纲和实验指导书,使实验课有纲可循,有事可做而不流于形式。
为了培养学生的综合应用随机数学解决实际问题的能力,我们构建了以《概率论与数理统计》为核心的课程群,包括《多元统计分析》、《时间序列分析》、《教育测量与统计学》、《随机过程》、《数学模型与数学实验》、《数学软件》等选修课程,大大丰富了学生随机数学的理论与方法解决实际问题的数据处理与分析的能力及数学建模能力。
为了开拓学生的视野,在学年论文和毕业论文中,我们加强指导,向学生介绍了一种现代非参数统计学习方法:《基于支持向量机的统计学习方法》,将这种方法用于相关关系的学习中。
为了达到培养学生学习《概率论与数理统计》课程及其课程群的学习及其解决实际问题的能力,我们连续多年组织了对我校参加全国大学生数学建模竞赛的学生的培训工作,特别是随机数学解决实际问题能力的培养。
由于我们改革教学的内容,增加了实验教学环节,并注重学生平时能力的培养,所以我们改革考核方式:学生平时作业及考勤占总成绩的20%,实验占20%,课程考试占60%。
为了传承我们的改革成果,我们注意在改革中积累经验,培养人才,使我们的改革有了传承、继续推进的后备人才,形成本门课程及其课程群的年龄、学历层次和职称结构合理的教师队伍,有博士1个,硕士3个,学士5个;教授1个,副教授6个,讲师2个。
4 概率论与数理统计课程教学改革与实践的效果
通过几年来的改革实践,概率论与数理统计的教学取得了较显著的效果。教学内容、方法手段的改革增加了学生学习该课程的兴趣,使学生真正体会到该课程的内容在工农业生产以及科学研究中的应用价值,充分调动了学生学习的主动性,激发了学生的创造性思维,增加了学生应用概率统计方法解决实际问题的能力。该课程的改革与实践取得了良好的教学效果,提高了教学质量,得到了学生的认可和赞同,问卷调查表明90%以上的学生对现在的教学方式和考试方法给予肯定,大多数学生都认为概率统计课在各学科中有较重要的应用。说明同学们对该门课程的思想方法和应用性有了较深刻的认识,教学改革的总体方向是正确的。
随着本课程及相关课程的深入改革,有许多学生在学年论文及毕业论文的选题上倾向于采用《概率论与数理统计》课程的理论与方法。与本课程相关的多篇毕业论文被评为校级优秀论文。
此外,本课程的任课教师还积极组织、培训、指导学生参加全国大学生数学建模竞赛并取得优异成绩。
参考文献:
[1]朱松涛.师专数学系《概率论与数理统计》课程教学的改革实践[J].数学通报,1998,(4).
[2]邓华玲等.概率论与数理统计课程的改革与实践[J].大学数学,2004,(1).
[3]陈新美等.《概率论与数理统计》教学改革与实践[J].湖南科技学院学报,2006,(11).
着科学的发展,数学在生活中的应用越来越广,生活的数学无处不在。而概率作为数学的一个重要部分,同样也在发挥着越来越广泛的用处。抽样调查,评估,彩票,保险等经常会遇到要计算概率的时候,举个例子在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里死亡的概率为,每个人一年付12元保险费,而在死亡的时候家属可以领取由保险公司支付的2000元,问保险公司盈利的概率是多少,公司获利不少于10000的概率是多少?这样的问题咋一看很难知道保险公司是否盈利,但经过概率统计的知识一计算就可以得知公司是几乎必定盈利的A={2500×12-2000X<0}={X>15}由此得知P=,而盈利10000以上的概率也有,以上的结果说明了为什么保险公司那样乐于开展保险业务的原因.除了保险,概率统计学对彩票也有有两个方面的应用 。据钱江晚报报道,彩票市场越来越火爆,据了解,南京某一期电脑福利彩票有一懂概率统计的彩民一个人中1个一等奖、3个二等奖、33个三等奖,有一期彩票有9注号码中一等奖,从而引发了无数彩民自己预测号码的愿望,概率统计方面的书籍也一下子走俏。许多平时见到符号就头疼的彩民也捧起概率书兴趣盎然地啃起来。东南大学经管院陈建波博士指出,概率书上讲的都是理论知识,一大堆数学计算公式,如何把概率书的理论运用到彩票选号中来,才是许多彩民关心的问题。实际上,概率统计学主要有两个方面的应用:一个方面是利用概率公式计算各种数字号码出现的概率值,然后选择最大概率值数字进行选号。举一个简单的例子,类似“1234567”七个数一直连续的彩票号码与非一直连续的号码出现的概率比例为:29:6724491(1:230000)左右,由于出现的概率值极低,因此一般不选这种连续号码。另一方面的应用是统计,即把以前所有中奖号码进行统计,根据统计得到的概率值来预测新的中奖号码,例如五区间选号法,就是根据统计进行选号的。南京的“专业”彩民则介绍一条选号规则———逆向选号法。从摇奖机的构造角度来说,它要保证每个数字中奖的概率都一样。虽然摇一次奖无法保证,摇100次奖也无法保证,但摇奖的次数越多,各个数字中奖的次数也必定越趋于平均。就像扔硬币,一开始就扔几次可能正反面出现的次数不一样,但随着扔的次数的增加,正反面出现的次数就会越来越接近。从这个角度考虑,在选号时就应该尽量选择前几次没中过奖的数字。这就是逆向选号法,即选择上一次或前几次没中奖的数字.......这也说明了概率的无所不在
统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。下文是我为大家整理的关于统计相关论文的范文,欢迎大家阅读参考!
浅谈概率在统计学中的应用
摘 要:概率是研究随机现象的数学学科,其理论严谨、 应用广泛、 发展迅速。目前,概率的理论与方法已广泛应用于 统计学中,主要是从正态分布、小概率事件两方面介绍了概率在统计学中的一些应用。
关键词:随机现象;事件;样本;母体;正态分布;小概率原理
统计学主要分为描述性统计学和推断性统计学。给定一组数据统计学可以摘要并且描述这些数据,这个用法称为描述性统计学。另外,观察者以数据的形式建立起一个用以解释其随机性和不确定性的数学模型,以之来推论研究中的步骤及母体,这种用法被称为应用统计学。另外,还有一个叫做数理统计学的学科专门用来讨论这门科目背后的理论基础。
同一仪器多次测量同一物体的重量,所得的结果彼此总是略有差异,这是由于诸如测量仪器受大气影响,观察者身体或 心理上的变化等等偶然因素引起的。同样的,同一门炮向同一目标发射多发同种炮弹,弹落点也不一样,因为炮弹制造时的种种偶然因素对炮弹质量也会有影响。此外,炮筒位置的误差,天气条件的微小变化等等都影响弹落点。再如从某生产线上用同一种工艺生产出来的灯泡寿命也是有差异的等等。
总之所举这些现象的一个共同点是:在基本条件不变的情况下,经过一系列试验或观察会得到不同的结果。换句话说,就个别的试验结果或观察结果而言,它会时而出现这种结果,时而出现那种结果,呈现出一种偶然性。这种现象称为随机现象。对于随机现象通常关心的是在试验或观察中某个结果是否出现,这种结果称为随机事件,简称事件。为了实际的理由选择研究团体的子集代替研究母体的每一笔资料,这个子集称作样本。推论统计学被用来将资料中的数据模型化,计算它的几率并且做出对于母体的推论,这个推论可能以对或错的答案呈现(假设检验)出对未来观察的预测,关联性的预测,或是将关系模式化(回归)。
随机现象有其偶然性的一面,也有其必然性的一面。这种必然性表现为大量试验中随机事件出现的频率的稳定性,即一个随机事件的频率常在某个固定的常数附近摆动,这种规律我们称之为统计规律性。频率的稳定性说明随机事件发生的可能性的大小是随机事件本身所固有的,不随人们的意志而改变的一种客观属性,因此可以对它进行度量。对于一个随机事件A用一个数p(A)来表示该事件发生的可能性的大小,这个数p(A)就称为随机事件A的概率,因此概率度量了随机事件发生的可能性的大小。
如果样本足以代表母体,那么由样本所做的推论和结论可以引申到整个母体之上,统计学提供了许多方法来估计和修正样本资料过程中的随机性(误差)。要了解随机性的一定几率必须具备基本的数学观念。数理统计是应用数学的分支,它使用几率论来分析并且验证统计的理论基础。
概率在统计学中有着重要的作用,包括总体、抽样研究、统计描述、统计推断、正态分布规律等,正态分布是概率中最重要的一种分布。一方面正态分布是自然界最常见的一种分布,例如测量的误差;炮弹弹落点的分布;人的生理特征的尺寸:身长、体重等;农作物的收获量;工厂产品的尺寸:直径、长度、宽度、高度,都近似服从正态分布。
一般来说若影响某一个数量指标的随机因素很多,而每个因素所起的作用又不太大,则服从正态分布这点可以用概率论的极限定理来加以证明。另一方面正态分布具有许多良好的性质,许多分布可用正态分布来近似,另外一些分布又可由正态分布来导出,因此在理论研究中,正态分布十分重要。如利用正态分布规律统计学校的成绩分布,得出一个阶段的学生总体是否进步,然后寻找原因,得出改进办法。分析一年 经济的发展,预测来年的收入。找出影响发展的主要因素,寻求改进的方法等等。
小概率事件即发生概率很小的事件(p≤),在统计学中有着重要的应用,这样的事件理论上发生的可能性则几乎为零。如买彩票中大奖,就是典型的小概率事件,也许每一期均会有大奖开出(可能性很小),但对于每一个彩民来说,他买一注中大奖的可能性(小概率事件在一次试验中就发生的概率几乎没有。其实,这就是小概率事件在统计学上应用的重要理论依据——小概率原理。)即小概率事件在一次试验中发生的可能性很小,如果真的发生了,根据统计学可怀疑其真实性。
如某接待站在一天内共接待5人单独来访,结果这5人全在周一到访,由此能否推断接待站有规定的接待日?假定没有规定的接待日,一个来访者在五天中任何一天来访都是等可能的用Am(m=1,2,3,4,5,)表示“一周接待了m个人,全都是周一来访”事件,Am的概率如下表示:
事件 A1概率 事件 A2概率
事件 A3概率 事件 A4概率
事件 A5概率
5个人都在周一来访的概率为,大约万分之三。现在概率很小的事件在一次试验中发生了,于是怀疑假定的正确性,从而推断接待站有规定的接待日。
公元1814年,拉普拉斯在他的新作中,记载了一个有趣的统计,世界上男婴与女婴的出生比值是22∶21,即在出生的婴儿中,男婴占,女婴占,可奇怪的是1745-1784年四十年间统计巴黎男婴的出生率时,却得到另一个比是25∶24,男婴占,与前者相差,对于这千分之一点八的微小差异,进行调查研究,发现巴黎人有“重女轻男”的现象,有抛弃男婴的陋习,以至于歪曲了出生率,经过修正出生比依然是22∶21。统计学依据小概率原理作出结论的正确性很高,但也存在犯错误的风险(较低)。
小概率原理在统计上有着非常重要的应用。如假设检验结论的判断,假设检验是用样本信息推测总体的一种统计推断方法,由于抽样误差的存在,样本信息和总体特征间可能不尽相同,所以假设检验实际上就是判断待比较各方的差别是不是由抽样误差造成的。假设检验中p值的大小反映的就是差别由抽样误差造成的概率。在假设检验中就是通过比较p值与检验水准a(通常设为)的大小关系,从而做出差别有无统计学意义。
如果p值小于a统计学则认为差别由抽样误差造成的概率很低,那么根据小概率原理认为,小概率事件在一次抽样中就发生的可能性几乎为零,所以判定差别可能是由于比较各方在本质上的不同导致的。否则认为差别是由抽样误差造成的。在这里检验水准是在假设检验前认为设定的,是研究者能够承受的本次假设检验放弃真错误的概率,也可以理解为是研究者设立的小概率事件的概率。而p值则是通过计算,即在检验假设成立的情况下,差别是由抽样误差造成的概率。
统计在现代化 管理和 社会生活中的地位日益重要,随着社会经济和科学技术的发展统计在现代化国家管理和企业管理中的地位越来越重要,人们的日常生活都离不开统计,统计的影响是这样巨大,故与之密切相关的概率的作用也越来越重要。
浅谈统计学基础教学方法与学生应用能力的培养
摘要:统计学基础知识是一门研究数据的技术性学科,具有综合性,抽象性及应用面广等特点,通过该课程的教学能培养学生运用统计工具,系统的分析问题和解决问题的能力。在中职教学中需结合本学科的特点,不断改进教学方法,提高学生综合应用统计知识的能力。
关键词:统计学教学方法设计能力培养
统计学基础知识是一门研究数据的技术性学科,学科内容中的调查研究和分析处理问题的方法,不仅应用于各项工作中,也用于其他学科研究过程中的数据搜集、整理、分析并得出结论。故统计学具有综合性,抽象性,应用面广等特点,通过该课程的教学能培养学生运用统计工具,系统的分析问题和解决问题的能力。现结合本学科的特点探讨其教学方法和学生应用能力的培养。
一、统计学基础课程教学的特点
统计学基础也是社会经济统计学原理,其学科内容的特点:一是基本概念多,理论讲授上较抽象;二是指标类别多,初学时严格划清各种指标内涵难;三是调查分析方法多,正确理解和选择恰当的调查方法难;四是正确的调查方式、方法指标体系的设置,统计范围的界定与是否得出反映事物的正确结论直接相关;五是科学设置调查事物的指标体系又与弄清反映该事物的客观内在本质的相关指标直接相关。因此,对年龄小,分析能力差的中职学生教学对象来讲,即便从概念上掌握了统计学的原理,如果不结合实际的统计案例资料和采用恰当的教学方法,就很难达到正确应用统计知识解决现实社会经济中问题的目的,甚至会因为错误使用方法,得出对事物评判的错误结论。
二、结合本学科知识的特点采用适当的教学方法,增强应用能力的培养
在教学中,首先通过对教材内容体系的全面分析和教学对象知识结构的分析,以及学生对统计学知识学习的兴趣、理解的深度和掌握应用情况的总结,在教学中的不同环节恰当地实施不同的教学方法。
1、通过学科内容体系导入与工作任务联系,提升学生学习兴趣
在讲授本学科内容时,首先给学生介绍统计学基础教材内容的基本框架:统计学的涵义、研究对象、性质、职能和研究的基本方法。其次是介绍学科知识体系:统计学中的基本概念,统计资料调查整理的方式方法,统计数据的显示与提供,以及提供的统计数字资料运用多种指标法进行分析(总量指标法--反映事物的规模状况,平均指标法--反映事物的集中趋势及一般规律,相对指标法--反映事物的纵向横向比较和事物之间的联系,标准差法--反映事物中总体单位标志值之间的离散趋势和程度,分析事物之间的差异。统计指数法--反映事物中各种直接因素的影响。
时间数列法--反映事物在时间段上的发展变化趋势。抽样调查法--统计专门调查方法中最科学的方法。相关回归分析法--分析事物中的因果关系。)通过内容体系的简单讲解导入,让学生在学习具体理论知识前就对该学科有一个总体感性认识,产生兴趣。带着要通过掌握统计知识去解决实际问题的意识和目的去学习。
2、让学生的学习从理性认识过渡到感性认识,增强应用能力
我在教学中介绍统计学的基本概念和统计调查方法内容时,除对每个知识点进行举例说明外,一部分知识讲完后,给出几个典型的统计调查方案让学生弄清在这些调查方案中所涉及的统计总体、总体范围的界定、总体单位、标志、指标以及采用的哪种调查方式等。这不仅让学生把抽象的统计学概念知识从理性认识过渡到了感性认识,而且通过这些案例还进一步让学生明白了调查方式的选用必须要根据调查对象和要解决的问题适当选取,而不是什么调查目的,什么事物都可以用任何一种调查方式。只有正确选用统计方式、方法去调查分析客观事物才能得出正确的结论,才能具备正确利用统计知识去分析解决问题的能力。
3、综合指标应用与典型资料结合法,提高学生的应用能力在讲授综合指标法时,对每一种指标的理解都是
分别举例说明让学生理解该指标的含义和作用。为了让学生能正确理解和区分每一种指标的作用,在所有指标介绍完后,我选用了国民经济年度统计公报资料作为案例,让学生从统计公报资料中找出学习过的每一种综合指标,如:2007年全国GDP总值,人口数等是总量指标。本年度GDP完成百分比是计划完成相对指标,本年度GDP比上年度增长百分比是动态相对指标。人均GDP是强度相对指标。
GDP构成比例是结构相对指标。五年中平均每年增长的百分比是后面要学习的平均发展速度和平均增长速度的应用。通过这样的案例,学生不仅对各种综合指标法的应用有了正确的理解,而且把各种指标的理解认识变成了应用能力,同时还对后面学习动态数列知识奠定了基础。在教学中很好地起到了巩固理解知识和预习下一教学环节内容的潜在作用。还起到了掌握知识综合性的效果。通过这样一个案例,学生进一步明确,研究一个总体的问题时,可以对问题的不同方面运用多种指标进行分析,弄清事物之间客观存在的关联,这些都必须用一定的统计数据来说话。因此进一步强调了学生学习统计知识的必要性,也让他们认识到统计学知识的科学性和实用性。
4、新旧知识在现实案例中的综合运用,提升学生应用能力
在讲授统计指数的内容时,传授给学生统计指数编制的基本方法的原理,教材中举例的商品价格、商品量、以及职工工资水平指数的编制都仅仅是一种计算基本方法的介绍。要培养学生应用能力还必须结合实际统计指数编制的案例进行讲解,让学生能够将理论知识及其计算方法应用到实际工作中去,所以我特意在理论知识和计算方法讲完后,介绍实际工作中零售物价指数的编制。这个经济指数也是民众普遍关注的问题,与人们生活水平息息相关。
告诉学生,物价指数的编制运用了抽样调查的知识,实际工作中不可能对每一种商品都采价调查,而是分大类商品,在商场和集贸市场分别采价。例如集贸市场的蔬菜价格每周至少要采集三次,每次要采集成交价的三人次,进入零售商品物价指数编制的价格实际上是一个多次简单平均的价格,而每天某种商品的三个价格要简单平均,每周三次的平均价格再简单平均。商场的商品价格如较稳定可用期初和期末的平均。通过这样一个案例,既给学生传授了新知识,又复习巩固了平均指标计算方法的具体应用,不仅日常生活中用,而且在经济研究中应用非常广泛。进一步告诉学生加权平均法和调和平均法在编制物价指数和其他社会经济现象指数中的应用。
5、典型调查案例教学法,培养学生综合应用统计知识,分析解决问题的能力
教学中我把学生应用统计知识,分析问题能力的培养放在抽样技术的教学内容中,抽样技术的基本理论也是抽象的。如,抽样误差,抽样平均误差,抽样的组织方式。针对研究对象的特点,都必须具体问题具体分析,而抽样误差的计算既涉及到平均指标的计算又涉及到标准差的计算,新旧知识的交替如何培养学生应用新旧知识计算、分析问题,解决问题是教学的难点。
为了突破这个难点,我在教学中利用了一个草席质量抽样调查的案例,这个案例体现了从制定调查方案中的调查方式的确定,采用主要标志划类,简单随机抽样原则,到调查实施的步骤:草席宽度分类,登记原验级等级,编顺序号,确定抽样总体,计算全级总体标准差,决定抽样数目,设计计算表格,决定样本号,现场调查中的统一验级标准。
验级过程:由5人分别验级,级数的最后确定采用众数办法,5人验级中的3人验级标准为准。以上这些都具有前面介绍的抽样调查方式的代表性,而又用到了平均指标和众数的方法。同时,在计算草席平均等级时,还用到了品质标志值平均指标的计算,即将等级品质标志值过渡成数量标志来计算该批不同尺寸草席的平均等级,再计算抽样指标与原验级指标之间的误差。
这样一个复杂的抽样调查过程和指标的计算结果,更清晰的告诉学生要说明和解决的问题:由于收购草席时,验级人员在判断标准上的误差带来了草席等级误差与价格的差异。而由于误差的存在,根据此抽样调查结果计算出的整个库存草席的总价值与实际价值的差异巨大。对导致这样的结果,进一步结合政策市场以及人为等多种因素进行分析,查找了原因并提出了切实可行的解决方案,促使了草席的收购价实相符。
通过以上几方面的教学方法设计,能让学生对统计学有更全面的认识,对学科基础内容有一个总体框架性把握,让那些学生在学习时感觉模糊的概念和繁杂的理论通过这几个教学环节的反复巩固和练习也逐步变得清晰,并大大提高了其综合应用统计知识的能力。
着科学的发展,数学在生活中的应用越来越广,生活的数学无处不在。而概率作为数学的一个重要部分,同样也在发挥着越来越广泛的用处。抽样调查,评估,彩票,保险等经常会遇到要计算概率的时候,举个例子在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里死亡的概率为,每个人一年付12元保险费,而在死亡的时候家属可以领取由保险公司支付的2000元,问保险公司盈利的概率是多少,公司获利不少于10000的概率是多少?这样的问题咋一看很难知道保险公司是否盈利,但经过概率统计的知识一计算就可以得知公司是几乎必定盈利的A={2500×12-2000X<0}={X>15}由此得知P=,而盈利10000以上的概率也有,以上的结果说明了为什么保险公司那样乐于开展保险业务的原因.除了保险,概率统计学对彩票也有有两个方面的应用 。据钱江晚报报道,彩票市场越来越火爆,据了解,南京某一期电脑福利彩票有一懂概率统计的彩民一个人中1个一等奖、3个二等奖、33个三等奖,有一期彩票有9注号码中一等奖,从而引发了无数彩民自己预测号码的愿望,概率统计方面的书籍也一下子走俏。许多平时见到符号就头疼的彩民也捧起概率书兴趣盎然地啃起来。东南大学经管院陈建波博士指出,概率书上讲的都是理论知识,一大堆数学计算公式,如何把概率书的理论运用到彩票选号中来,才是许多彩民关心的问题。实际上,概率统计学主要有两个方面的应用:一个方面是利用概率公式计算各种数字号码出现的概率值,然后选择最大概率值数字进行选号。举一个简单的例子,类似“1234567”七个数一直连续的彩票号码与非一直连续的号码出现的概率比例为:29:6724491(1:230000)左右,由于出现的概率值极低,因此一般不选这种连续号码。另一方面的应用是统计,即把以前所有中奖号码进行统计,根据统计得到的概率值来预测新的中奖号码,例如五区间选号法,就是根据统计进行选号的。南京的“专业”彩民则介绍一条选号规则———逆向选号法。从摇奖机的构造角度来说,它要保证每个数字中奖的概率都一样。虽然摇一次奖无法保证,摇100次奖也无法保证,但摇奖的次数越多,各个数字中奖的次数也必定越趋于平均。就像扔硬币,一开始就扔几次可能正反面出现的次数不一样,但随着扔的次数的增加,正反面出现的次数就会越来越接近。从这个角度考虑,在选号时就应该尽量选择前几次没中过奖的数字。这就是逆向选号法,即选择上一次或前几次没中奖的数字.......这也说明了概率的无所不在
人类在对自然界和实际生活中各类随机现象的深入研究是产生概率统计的前提和基础,从这一方面上看,概率统计脱胎于实际生活。当前,人们对概率统计的认知只是停留在浅表的层面,认为概率统计高深莫测,采用敬而远之的策略,出现了概率统计与实际生活的分离,这不但会影响概率统计的实际应用,也会使实际生活难于做出科学的判断和合理的决策。新时期的实际生活正在丰富多彩,人们应该利用概率统计这一武器,从实际生活出发,探寻概率统计应用的方法和策略,使人们的日常行为、实际生活、具体生产得到科学化的指引,做到对整个社会发展、科学、进步水平的支持与保障。 1 概率统计对于实际生活的重要价值 从概率统计的产生和发展来看,概率统计脱胎于对实际生活现象的观察,而实际生活和生产的发展也需要概率统计作为基础和手段,因此,在生活和生产中与概率统计打交道是常见的现象,社会越发达就越需要深入利用概率统计这一武器,做到对行为的控制和决策的支持。在保险工作、抽奖活动、质量判断、游戏活动等具体的生活中,概率统计有着直接而重要地应用,而大众由于没有必要的概率统计知识和手段,往往会做出非理性判断和不科学决策,最终造成对自身的不利影响。一些商家会应用概率统计的手段,通过科学、准确地概率统计实现自身的应力和利润。从上述两个层面的分析,可以理解概率统计对社会各主体的作用,也能看到概率统计对于实际生产的重要意义,因此,有必要针对实际生产和生活展开概率统计的深层次利用。 2 实际生活中概率统计的具体应用策略和方法 (1)保险工作中对概率统计的应用 某保险公司承担汽车保险业务,在保险额上限为20万元的第三者责任险中,车主缴纳1200元保险费用,如果有1000辆汽车投保,计算此保险公司盈利40万元的概率,保险公司亏本的概率是多大?假设每次交通事故保险公司理赔平均额为5万元,盈利40万元意味被保险车辆出现事故的车次不超过16次,正常情况下车辆出现事故的概率为,如果盈利40万元为事件C,计算可以得知p(C)=,由此可以得知,保险公司盈利40万元的概率是相当高的。 (2)抽奖活动中对概率统计的应用 抽奖是现代市场经济常见的促销手段,很多消费者在商家的抽奖活动前会改变消费策略和方法,因此,商家愿意通过抽奖活动确保市场扩大和利润增长。而在具体的抽奖活动中,如果奖券的数量不高,很多消费者会产生错误的想法,认为后抽奖的人具有更大的中奖概率,纷纷选择靠后的抽奖顺序。如果中奖出现在抽奖的初始时期,会在消费者中产生"内部操作"的思想。这时商家应该利用概率统计的手段,说明顺序和中奖的关系,展现抽奖活动的公平性,做到对消费者正确地引导。例如:商家可以假设50张抽奖券中有5张是中奖奖券,现在有2人去抽奖,通过概率统计的准确计算,得出P(1)和P(2)通过对比P(1)和P(2)的大小,可以科学判断抽奖顺序和中奖之间没有必然的联系,进一步体现抽奖的公平,做到对消费者困惑和歧义的有效处理,建立商家更为积极的商业形象。 (3)质量判断中概率统计的应用 例如,张老师在批发市场买苹果,当询问苹果质量如何的时候,卖主说一箱苹果100个,里面至多有四五个是坏的.张老师随机打开一箱抽取了10个,结果这10个中有3个是坏的。通过概率统计可以得知,一箱苹果100个,其中5个是坏的,抽取的10个中坏苹果为3的概率为P(X=3)=,同理,P(X=4)=,P(X=5)=,根据古典概率的定义,10个苹果中坏苹果大于2的概率P(X>2)=P(X=3)+P(X=4)+P(X=5)=,苹果质量一定与买主说的不一致. (4)游戏活动中概率统计的应用 生活中有各类娱乐和游戏活动,很多看似简单的游戏会引发人们的兴趣,例如:常见的"套圈"就是一款看似简单而实际困难的游戏,套圈游戏的规则是:在固定的距离上,投掷套圈,套圈能够套取的物品就是游戏的奖品。在实际生活中,很多人低估了游戏的难度,导致大量购买套圈,造成得不偿失的问题。 3 结语 概率统计是数学重要的知识组成,也是来源于实际和生活的方法归纳与总结,在实际应用中概率统计与生活有着紧密的联系,特别在重要的应用领域,概率统计的思想、手法和判别有着关键性的应用,不但可以为生活提供更为科学的认知,也为各类生活决策提供合理和有效的基础。
网友:给你一篇参考一下:概率在生活中的应用由于新课程强调数学教育的基础性、现实性、大众性,重视素质教育与中考、高考的兼容性,概率统计在社会现实中具有很高的应用价值.在复习中要关注生活背景、社会现实、经济建设、科技发展等各个方面,并从中提炼出具有社会价值的数学应用背景。 应注意培养学生善于从普通语言中捕捉信息、将普通语言转化为数学语言的能力,使学生能以数学语言为工具进行数学思维与数学交流。有关概率的知识在生活中应用非常广泛。第一部分: 概念重难点 (1)了解必然发生的事件、不可能发生的事件、随机事件的特点.(2)在具体情境中了解概率的意义一点就透(1)有关概率的注意事项:a.概率是随机事件发生的可能性的大小的数量反映.b.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.(2)频率与概率的区别与联系:从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.生活中来你能指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件吗?1.通常加热到100°C时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是360°;5. 经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快. 第二部分: 列举法求概率重难点学会用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策.第三部分: 利用频率估计概率疑难分析(1)当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.(2)利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P.(3)利用频率估计出的概率是近似值.经典一例例: 某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1) 计算并完成表格:转动转盘的次数n10001000落在“铅笔”的次数m681111落在“铅笔”的频率 (2) 请估计,当 很大时,频率将会接近多少?(3) 转动该转盘一次,获得铅笔的概率约是多少?(4) 在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°) 解答:(1)、、、、、;(2);(3);(4)×360°≈248°.评注:(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率. 第四部分:概率在考证历史中的应用——考证《红楼梦》作者 数学思维的价值在于创意。复旦大学数学系李贤平教授关于红楼梦作者的工作一直引起我的关注。自从胡适作《红楼梦考证》以来,都认为曹雪芹作前80回,后40回为高鹗所续。《红楼梦》的作者是谁,当然由红学家来考证。但是我们是否可以用数学方法进行研究,并得出一些新的结果来?1987年,李贤平教授做了。一般认为,每个人使用某些词的习惯是特有的。于是李教授用陈大康先生对每个回目所用的47个虚字(之,其,或,亦……,呀,吗,咧,罢……;的,着,是,在,……;可,便,就,但,……,儿等)出现的次数(频率),作为《红楼梦》各个回目的数字标志,然后用数学方法进行比较分析,看看哪些回目出自同一人的手笔。最后李教授得出了许多新结果: 前80回与后40回之间有交叉。 前80回是曹雪芹据《石头记》写成,中间插入《风月宝鉴》,还有一些别的增加成分。 后40回是曹雪芹亲友将曹雪芹的草稿整理而成,宝黛故事为一人所写,贾府衰败情景当为另一人所写。 在平时的生活中,应要求学生多关心国家大事,了解信息社会,讲究联系实际,重视概率统计在生产、生活及科学中的应用,并加强对学生进行偶然性与必然性的对立统一观点的教育.具体还是自己还根据实际情况来写。