首页 > 毕业论文百科 > 毕业论文多元回归模型

毕业论文多元回归模型

发布时间:

毕业论文多元回归模型

实验三 多元回归模型【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。【实验内容】建立我国国有独立核算工业企业生产函数。根据生产函数理论,生产函数的基本形式为: 。其中,L、K分别为生产过程中投入的劳动与资金,时间变量 反映技术进步的影响。表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。表3-1 我国国有独立核算工业企业统计资料年份 时间 工业总产值Y(亿元) 职工人数L(万人) 固定资产K(亿元)1978 1 3139 2 3208 3 3334 4 3488 5 3582 6 3632 7 3669 8 3815 9 3955 10 4086 11 4229 12 4273 13 4364 14 4472 15 4521 16 4498 17 4545 资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、建立多元线性回归模型一建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:⒈建立工作文件: CREATE A 78 94⒉输入统计资料: DATA Y L K⒊生成时间变量 : GENR T=@TREND(77)⒋建立回归模型: LS Y C T L K则生产函数的估计结果及有关信息如图3-1所示。 图3-1 我国国有独立核算工业企业生产函数的估计结果因此,我国国有独立工业企业的生产函数为: (模型1) =() () () () 模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为,资金的边际产出为,技术进步的影响使工业总产值平均每年递增亿元。回归系数的符号和数值是较为合理的。 ,说明模型有很高的拟合优度,F检验也是高度显著的,说明职工人数L、资金K和时间变量 对工业总产值的总影响是显著的。从图3-1看出,解释变量资金K的 统计量值为,表明资金对企业产出的影响是显著的。但是,模型中其他变量(包括常数项)的 统计量值都较小,未通过检验。因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除 统计量最小的变量(即时间变量)而重新建立模型。二建立剔除时间变量的二元线性回归模型; 命令:LS Y C L K则生产函数的估计结果及有关信息如图3-2所示。 图3-2 剔除时间变量后的估计结果因此,我国国有独立工业企业的生产函数为: (模型2) =() () () 从图3-2的结果看出,回归系数的符号和数值也是合理的。劳动力边际产出为,资金的边际产出为,表明这段时期劳动力投入的增加对我国国有独立核算工业企业的产出的影响最为明显。模型2的拟合优度较模型1并无多大变化,F检验也是高度显著的。这里,解释变量、常数项的 检验值都比较大,显著性概率都小于,因此模型2较模型1更为合理。三建立非线性回归模型——C-D生产函数。C-D生产函数为: ,对于此类非线性函数,可以采用以下两种方式建立模型。方式1:转化成线性模型进行估计;在模型两端同时取对数,得: 在EViews软件的命令窗口中依次键入以下命令:GENR LNY=log(Y)GENR LNL=log(L)GENR LNK=log(K)LS LNY C LNL LNK则估计结果如图3-3所示。 图3-3 线性变换后的C-D生产函数估计结果即可得到C-D生产函数的估计式为: (模型3) = () () () 即: 从模型3中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,而且拟合优度较模型2还略有提高,解释变量都通过了显著性检验。方式2:迭代估计非线性模型,迭代过程中可以作如下控制:⑴在工作文件窗口中双击序列C,输入参数的初始值;⑵在方程描述框中点击Options,输入精度控制值。控制过程:①参数初值:0,0,0;迭代精度:10-3;则生产函数的估计结果如图3-4所示。 图3-4 生产函数估计结果此时,函数表达式为: (模型4) =()(-)() 可以看出,模型4中劳动力弹性 =,资金的产出弹性 =,很显然模型的经济意义不合理,因此,该模型不能用来描述经济变量间的关系。而且模型的拟合优度也有所下降,解释变量L的显著性检验也未通过,所以应舍弃该模型。②参数初值:0,0,0;迭代精度:10-5; 图3-5 生产函数估计结果从图3-5看出,将收敛的误差精度改为10-5后,迭代100次后仍报告不收敛,说明在使用迭代估计法时参数的初始值与误差精度或迭代次数设置不当,会直接影响模型的估计结果。③参数初值:0,0,0;迭代精度:10-5,迭代次数1000; 图3-6 生产函数估计结果此时,迭代953次后收敛,函数表达式为: (模型5) =()()() 从模型5中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理, ,具有很高的拟合优度,解释变量都通过了显著性检验。将模型5与通过方式1所估计的模型3比较,可见两者是相当接近的。④参数初值:1,1,1;迭代精度:10-5,迭代次数100; 图3-7 生产函数估计结果此时,迭代14次后收敛,估计结果与模型5相同。比较方式2的不同控制过程可见,迭代估计过程的收敛性及收敛速度与参数初始值的选取密切相关。若选取的初始值与参数真值比较接近,则收敛速度快;反之,则收敛速度慢甚至发散。因此,估计模型时最好依据参数的经济意义和有关先验信息,设定好参数的初始值。二、比较、选择最佳模型估计过程中,对每个模型检验以下内容,以便选择出一个最佳模型:一回归系数的符号及数值是否合理;二模型的更改是否提高了拟合优度;三模型中各个解释变量是否显著;四残差分布情况以上比较模型的一、二、三步在步骤一中已有阐述,现分析步骤一中5个不同模型的残差分布情况。分别在模型1~模型5的各方程窗口中点击View/Actual, Fitted, Residual/ Actual, Fitted, Residual Table(图3-8),可以得到各个模型相应的残差分布表(图3-9至图3-13)。可以看出,模型4的残差在前段时期内连续取负值且不断增大,在接下来的一段时期又连续取正值,说明模型设定形式不当,估计过程出现了较大的偏差。而且,模型4的表达式也说明了模型的经济意义不合理,不能用于描述我国国有工业企业的生产情况,应舍弃此模型。模型1的各期残差中大多数都落在 的虚线框内,且残差分别不存在明显的规律性。但是,由步骤一中的分析可知,模型1中除了解释变量K之外,其余变量均为通过变量显著性检验,因此,该模型也应舍弃。模型2、模型3、模型5都具有合理的经济意义,都通过了 检验和F检验,拟合优度非常接近,理论上讲都可以描述资本、劳动的投入与产出的关系。但从图3-13看出,模型5的近期误差较大,因此也可以舍弃该模型。最后将模型2与模型3比较发现,模型3的近期预测误差略小,拟合优度比模型2略有提高,因此可以选择模型2为我国国有工业企业生产函数。 图3-8 回归方程的残差分析 图3-9 模型1的残差分布图3-10 模型2的残差分布图3-11 模型3的残差分布图3-12 模型4的残差分布图3-13 模型5的残差分布

问题一:多元线性回归分析论文中的回归模型怎么分析 根据R方最大的那个来处理。(南心网 SPSS多元线性回归分析) 问题二:谁能给我列一下多元线性回归分析的步骤,这里正在写论文,第一部分是研究方法,多谢 10分 选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。 需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。 问题三:用SPSS做多元线性回归,之后得到一些属于表格,该怎样分析这些数据? 200分 你的分析结果没能通过T检验,这可能是回归假设不满足导致的,需要进一步对数据进行验证,有问题可以私信我。 问题四:过于多元线性回归分析,SPSS操作 典型的多重共线。 多元回归分析中,一定要先进行多重共线检验,如VIF法。 对于存在多重共线的模型,一个办法是逐步回归,如你做的,但结果的删除变量太多,所以,这种方法效果不好。 此外,还有其它办法,如岭回归,主成分回归,这些方法都保留原始变量。 问题五:硕士毕业论文中做多元线性回归的实证分析,该怎么做 多元线性,回归,的实证分析 问题六:用SPSS做多元回归分析得出的指标结果怎么分析啊? 表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。 ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。 问题七:如何对数据进行多元线性回归分析? 5分 对数据进行多元线性回归分析方法有很多,除了用pss ,可以用Excel的数据分析模块,也可以用Matlab的用regress()函数拟合。你可以把数据发到我的企鹅邮箱,邮箱名为百度名。 问题八:经济类论文 多元线性回归 变量取对数 40分 文 多元线性回归 变量取对数 知道更多 多了解

古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行科学研究和描述科研成果的文章,简称之为论文。它既是探讨问题进行科学研究的一种手段,又是描述科研成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等,总称为论文。论文一般由 题名、 作者、 摘要、 关键词、 正文、 参考文献和附录等部分组成,其中部分组成(例如 附录)可有可无。论文题目要求准确、简练、醒目、新颖。目录目录是论文中主要段落的简表。(短篇论文不必列目录)内容提要是 文章主要内容的摘录,要求短、精、完整。1、先确立一个论点。全文围绕这一论点展开论证。对“开卷有益”这种说法,既不能全盘否定,写驳论文;也不宜全盘肯定,写成立论文。因为这种说法既有它正确的一面。又有它不够全面的地方,所以对这个看法要采取“一分为二”的方法进行分析,肯定其有益的一面,否定其有害的一面,从中总结出正确的论点来。只有这样才能对这一说法作出合乎事实的评价,最终达到以理服人的目的。2、运用“一分为二”的方法进行分析,要防止出这样一个毛病:自相矛盾。一会儿说开卷有益,一会儿说开卷有害,令人不知所云。为了避免这种现象,文章中还要将二者的联系点明,才算把道理真正说透。3、从论证方法看,如果所读的书是坏书,则开卷未必有益,这里可以采取例证法,并辅之以引证法和喻证法,用前几年社会上黄书泛滥成灾毒害青少年作为事实论据,用名人名言作为理论论据,充分论证黄书的害处和读好书的益处。在此基础上,再把这两者辩正地统一起来。说明我们中学生既要多读书,又要慎重地加以选择、读好书。这样从正反两方面进行论证,就将问题说得比较全面而深刻,文章也就具有了不可辩驳的逻辑力量。导思:这是一篇给材料作文。该题虽然规定了作文题目,但仍给学生思维留下了很大的空间,从文体来看,写议论文是最好的选择。学生可以从是非观、处世态度、治学精神等方面谈自己的看法,阐述自己的见解和主张。要写好议论文,必须做好以下三点:1、确定论点。根据命题提供的材料,可从不同角度提炼出诸多观点,但短短600字的文章不可能面面俱到。因此,一定要选准一个论点充分论证。2、选好论据。论据能起到充分证明论点的作用,论据选择要遵循两个原则:①真实确凿,不能有虚假成分;②具有典型性,有说服力,才能发挥更大的作用。3、组织好论证结构。最常用的结构一般为“提出问题(引论)——分析问题(本论)——解决问题(结论)”。

计量多元回归模型毕业论文

问题一:多元线性回归分析论文中的回归模型怎么分析 根据R方最大的那个来处理。(南心网 SPSS多元线性回归分析) 问题二:谁能给我列一下多元线性回归分析的步骤,这里正在写论文,第一部分是研究方法,多谢 10分 选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。 需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。 问题三:用SPSS做多元线性回归,之后得到一些属于表格,该怎样分析这些数据? 200分 你的分析结果没能通过T检验,这可能是回归假设不满足导致的,需要进一步对数据进行验证,有问题可以私信我。 问题四:过于多元线性回归分析,SPSS操作 典型的多重共线。 多元回归分析中,一定要先进行多重共线检验,如VIF法。 对于存在多重共线的模型,一个办法是逐步回归,如你做的,但结果的删除变量太多,所以,这种方法效果不好。 此外,还有其它办法,如岭回归,主成分回归,这些方法都保留原始变量。 问题五:硕士毕业论文中做多元线性回归的实证分析,该怎么做 多元线性,回归,的实证分析 问题六:用SPSS做多元回归分析得出的指标结果怎么分析啊? 表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。 ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。 问题七:如何对数据进行多元线性回归分析? 5分 对数据进行多元线性回归分析方法有很多,除了用pss ,可以用Excel的数据分析模块,也可以用Matlab的用regress()函数拟合。你可以把数据发到我的企鹅邮箱,邮箱名为百度名。 问题八:经济类论文 多元线性回归 变量取对数 40分 文 多元线性回归 变量取对数 知道更多 多了解

最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。( 作出相应的说明 )3、确定理论模型或函数式(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)(二)数据的收集和整理(三)数据处理和回归分析(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)(四)回归结果分析和检验(写出模型估计的结果)1、回归结果的经济理论检验,方向正确否?理论一致否?2、统计检验,t检验 F 检验 R2— 拟合优度检验3、模型设定形式正确否?可试试其他形式。4、模型的稳定性检验。(五)模型的修正(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)(六)确定模型(七)预测

实验三 多元回归模型【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。【实验内容】建立我国国有独立核算工业企业生产函数。根据生产函数理论,生产函数的基本形式为: 。其中,L、K分别为生产过程中投入的劳动与资金,时间变量 反映技术进步的影响。表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。表3-1 我国国有独立核算工业企业统计资料年份 时间 工业总产值Y(亿元) 职工人数L(万人) 固定资产K(亿元)1978 1 3139 2 3208 3 3334 4 3488 5 3582 6 3632 7 3669 8 3815 9 3955 10 4086 11 4229 12 4273 13 4364 14 4472 15 4521 16 4498 17 4545 资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、建立多元线性回归模型一建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:⒈建立工作文件: CREATE A 78 94⒉输入统计资料: DATA Y L K⒊生成时间变量 : GENR T=@TREND(77)⒋建立回归模型: LS Y C T L K则生产函数的估计结果及有关信息如图3-1所示。 图3-1 我国国有独立核算工业企业生产函数的估计结果因此,我国国有独立工业企业的生产函数为: (模型1) =() () () () 模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为,资金的边际产出为,技术进步的影响使工业总产值平均每年递增亿元。回归系数的符号和数值是较为合理的。 ,说明模型有很高的拟合优度,F检验也是高度显著的,说明职工人数L、资金K和时间变量 对工业总产值的总影响是显著的。从图3-1看出,解释变量资金K的 统计量值为,表明资金对企业产出的影响是显著的。但是,模型中其他变量(包括常数项)的 统计量值都较小,未通过检验。因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除 统计量最小的变量(即时间变量)而重新建立模型。二建立剔除时间变量的二元线性回归模型; 命令:LS Y C L K则生产函数的估计结果及有关信息如图3-2所示。 图3-2 剔除时间变量后的估计结果因此,我国国有独立工业企业的生产函数为: (模型2) =() () () 从图3-2的结果看出,回归系数的符号和数值也是合理的。劳动力边际产出为,资金的边际产出为,表明这段时期劳动力投入的增加对我国国有独立核算工业企业的产出的影响最为明显。模型2的拟合优度较模型1并无多大变化,F检验也是高度显著的。这里,解释变量、常数项的 检验值都比较大,显著性概率都小于,因此模型2较模型1更为合理。三建立非线性回归模型——C-D生产函数。C-D生产函数为: ,对于此类非线性函数,可以采用以下两种方式建立模型。方式1:转化成线性模型进行估计;在模型两端同时取对数,得: 在EViews软件的命令窗口中依次键入以下命令:GENR LNY=log(Y)GENR LNL=log(L)GENR LNK=log(K)LS LNY C LNL LNK则估计结果如图3-3所示。 图3-3 线性变换后的C-D生产函数估计结果即可得到C-D生产函数的估计式为: (模型3) = () () () 即: 从模型3中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,而且拟合优度较模型2还略有提高,解释变量都通过了显著性检验。方式2:迭代估计非线性模型,迭代过程中可以作如下控制:⑴在工作文件窗口中双击序列C,输入参数的初始值;⑵在方程描述框中点击Options,输入精度控制值。控制过程:①参数初值:0,0,0;迭代精度:10-3;则生产函数的估计结果如图3-4所示。 图3-4 生产函数估计结果此时,函数表达式为: (模型4) =()(-)() 可以看出,模型4中劳动力弹性 =,资金的产出弹性 =,很显然模型的经济意义不合理,因此,该模型不能用来描述经济变量间的关系。而且模型的拟合优度也有所下降,解释变量L的显著性检验也未通过,所以应舍弃该模型。②参数初值:0,0,0;迭代精度:10-5; 图3-5 生产函数估计结果从图3-5看出,将收敛的误差精度改为10-5后,迭代100次后仍报告不收敛,说明在使用迭代估计法时参数的初始值与误差精度或迭代次数设置不当,会直接影响模型的估计结果。③参数初值:0,0,0;迭代精度:10-5,迭代次数1000; 图3-6 生产函数估计结果此时,迭代953次后收敛,函数表达式为: (模型5) =()()() 从模型5中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理, ,具有很高的拟合优度,解释变量都通过了显著性检验。将模型5与通过方式1所估计的模型3比较,可见两者是相当接近的。④参数初值:1,1,1;迭代精度:10-5,迭代次数100; 图3-7 生产函数估计结果此时,迭代14次后收敛,估计结果与模型5相同。比较方式2的不同控制过程可见,迭代估计过程的收敛性及收敛速度与参数初始值的选取密切相关。若选取的初始值与参数真值比较接近,则收敛速度快;反之,则收敛速度慢甚至发散。因此,估计模型时最好依据参数的经济意义和有关先验信息,设定好参数的初始值。二、比较、选择最佳模型估计过程中,对每个模型检验以下内容,以便选择出一个最佳模型:一回归系数的符号及数值是否合理;二模型的更改是否提高了拟合优度;三模型中各个解释变量是否显著;四残差分布情况以上比较模型的一、二、三步在步骤一中已有阐述,现分析步骤一中5个不同模型的残差分布情况。分别在模型1~模型5的各方程窗口中点击View/Actual, Fitted, Residual/ Actual, Fitted, Residual Table(图3-8),可以得到各个模型相应的残差分布表(图3-9至图3-13)。可以看出,模型4的残差在前段时期内连续取负值且不断增大,在接下来的一段时期又连续取正值,说明模型设定形式不当,估计过程出现了较大的偏差。而且,模型4的表达式也说明了模型的经济意义不合理,不能用于描述我国国有工业企业的生产情况,应舍弃此模型。模型1的各期残差中大多数都落在 的虚线框内,且残差分别不存在明显的规律性。但是,由步骤一中的分析可知,模型1中除了解释变量K之外,其余变量均为通过变量显著性检验,因此,该模型也应舍弃。模型2、模型3、模型5都具有合理的经济意义,都通过了 检验和F检验,拟合优度非常接近,理论上讲都可以描述资本、劳动的投入与产出的关系。但从图3-13看出,模型5的近期误差较大,因此也可以舍弃该模型。最后将模型2与模型3比较发现,模型3的近期预测误差略小,拟合优度比模型2略有提高,因此可以选择模型2为我国国有工业企业生产函数。 图3-8 回归方程的残差分析 图3-9 模型1的残差分布图3-10 模型2的残差分布图3-11 模型3的残差分布图3-12 模型4的残差分布图3-13 模型5的残差分布

spss多元回归毕业论文

运用逐步回归法分析影响上海银行存款的因素1.目的和意义在现代商品经济社会中,人们的工作与生活已经离不开货币。在生活中人们所需的各种商品,都需要用货币去购买;人们所需的各种服务,也需要支付货币来获得;人们劳动工作的所获得的报酬——工资,也是用货币支付的;人们为了种种目的,要积累财富,保存财富,采用的主要方式是积攒货币、到银行储蓄。除个人外,企业、行政事业部门的日常运行同样也离不开货币。财政收支也都是用货币进行的。可见,货币已经融入了并影响这经济运行和人们的生活。作为经营“货币”这种商品的银行的功能是办理各种存款(也称为负债业务)、放款和汇兑业务,其中商业银行所吸收的各种存款(活期、定期、储蓄)约占银行资金来源的70%~80%,为银行提供了绝大部分的资金来源,并为实现银行各职能活动提供了基础。所以说,银行存款对银行本身的生存和发展有着重要意义,除此之外,银行存款也能反映出一个特定时期人们的生活水平以及经济发展的水平。因此对上海的银行存款的分析是非常重要且必要的。本文将介绍运用统计分析软件中的逐步回归法对影响上海银行存款的因素进行分析研究并建立模型,为相关专业人士的决策提供一定参考。2.影响银行存款的因素分析存款作为银行吸收资金来源的主要业务,其之影响因素非常的多。从中我选取了10个主要因素的(1951年至2000年)数据运用SPSS的逐步回归法分析和研究它们对上海银行存款的影响程度。这10个因素分别是全市居民储蓄(亿元)、从业人数(万人)、全市居民消费水平(元/人)、全市银行贷款(亿元)、全社会固定资产投资总额(亿元)、职工工资总额(亿元)、职工劳保福利费用(万元)、社会消费品零售总额(亿元)、外贸出口商品总额(亿美元)、全市财政收入(亿元)。上海全市银行存款及影响其的10个因素的1951年至2000年的数据见下表。表上海全市银行存款数据(1951年~2000年)年份 全市银行存款(亿元) 全市居民储蓄(亿元) 从业人数(万人) 全市居民消费水平(元/人) 全市银行贷款(亿元) 全社会固定资产投资总额(亿元) 职工工资总额(亿元) 职工劳保福利费用(万元) 社会消费品零售总额(亿元) 全市财政收入(亿元) 外贸出口商品总额(亿美元)1964 270 33117 276 33819 298 34536 300 35268 293 36016 309 36780 304 37560 318 38356 334 39169 357 39999 380 40847 397 41737 408 46531 411 49797 442 57424 527 81664 582 94004 638 102061 640 113909 688 127679 789 152282 1030 190217 1190 233574 1298 286323 1680 391974 1928 437789 2009 533797 2421 670676 2842 804903 4162 1038701 5343 1241344 6712 1496034 7742 .30 8699 .21 9202 .03 10328 2095239 11546 2521553 注:该表数据来源:《上海统计年鉴》全市居民储蓄(亿元)个人货币收入是用来供个人消费的,积蓄是准备用作远期消费或不可预测的需要,它们都不是资本,金额也比较小。由于现代银行制度的发展,举办储蓄,并支付利息,小额的货币收入就可以转化为资本,从而扩大了社会资本总量,加速经济的发展。由表可看到,随着社会经济的发展和人们收入的不断提高,全市居民储蓄从1951年的亿元增加至2000年的亿元,特别是1985年之后呈快速增长趋势。可见社会公众的储蓄增长会提高银行盈利资产的规模,一定程度上使商业银行获得更多的收益。所以,全市居民储蓄对银行存款有着直接而深远的影响。从业人数(万人)从业人数是指在全市各行各业的企事业单位中从事工作人数的总和,其包括了国有、集体、合资、独资等其他单位的从业人员,城镇个体劳动者,农村集体和个体劳动者以及其他劳动者。从表可知,从业人数是呈稳定增长趋势的,这与全市人口的增加有着极大的关系。上海近十几年经济的飞速发展和国际大都市的形象,吸引了大批的外来人口(外地和外国)来沪居住、创业以及工作。随着全市企业数量的不断增加,从业人数也在不断的增加。从业人数的多少与银行存款有着紧密的联系,因为每个从业人员都会有自己的收入,不管收入的多与寡,他们每个人都会在银行拥有一个以上的帐户并利用存折、借计卡来取工资或办理各种活期、定期的储蓄或取款;利用信用卡刷卡消费或提款。全市居民消费水平(元/人)居民消费水平是指居民在物质产品和劳务的消费过程中,对满足人们生存、发展和享受需要方面所达到的程度。通过消费的物质产品和劳务的数量和质量反映出来。反映居民消费水平的主要指标有:(1)平均实物消费量指标:平均每人全年主要有消费品的消费量、平均每百户耐用消费品拥有量、人均居住面积、平均每人生活用水量、平均每人生活用电量等;(2)现代化生活设施的普及程度指标:自来水普及率、煤气普及率、平均每百户主要家用电器拥有量、电话普及率等;(3)反映消费水平的消费结构指标:居民生活消费支出中食品的比例、居民生活消费支出中文化生活服务支出比例、不同质量消费品的消费比例等;(4)平均消费量的价值指标:平均每人消费基金、平均每人生活消费额、平均每人用于各项生活消费的支出等。从表中可以看到1990年以后的居民消费水平有了大大的提升,可见人们的生活质量随着改革开放的步伐的加快也越来越好。全市银行贷款(亿元)贷款,又称放款,是银行将其所吸收的资金,按一定的利率贷给客户并约定归还期限的业务。虽然银行运用资金的方式不止贷款一种,但是贷款是商业银行在其资产业务中的比重一般占首位。通过贷款联系,银行可密切与工商企业往来联系,有利于拓宽业务领域,获得更多的利润。银行贷款的种类按不同的标注至少又以下几类:按期限分为短期贷款、中期贷款和长期贷款;按用途可分为投资贷款、商业贷款、消费贷款和农业贷款;按贷款是否有抵押品分为:抵押贷款和无抵押贷款;按换款的方式分为:一次偿还贷款和分期偿还贷款。从表可知,银行贷款不断的大幅度增加,表明了经济的快速发展和人们消费理念的变化。全社会固定资产投资总额(亿元)固定资产投资总额是以货币表现的建造和购置固定资产活动的工作量,它是反映固定资产投资规模、速度、比例关系和使用方向的综合性指标。全社会固定资产投资包括基本建设投资、更新改造投资、国有单位其他固定资产投资、房地产开发投资、城镇集体固定资产投资、联营经济、股份制经济、外商投资经济、港澳台投资经济及其他经济类型的固定资产投资,农村集体5万元以上固定资产投资,城镇工矿区私人建房投资和国防、人防基本建设投资。全社会固定资产投资按经济类型可分为国有、集体、个体、联营、股份制、外商、港澳台商、其他等。按照管理渠道,全社会固定资产投资总额分为基本建设、更新改造、房地产开发投资和其他固定资产投资四个部分。是社会固定资产再生产的主要手段。通过建造和购置固定资产的活动,国民经济不断采用先进技术装备,建立新兴部门,进一步调整经济结构和生产力的地区分布,增强经济实力,为改善人民物质文化生活创造物质条件。这对我国的社会主义现代化建设具有重要意义。从表可知,固定资产投资的总额是呈不固定态势来增长的,2000年的固定资产投资总额比1900年的增长倍,非常真实地反映了上海在上世纪90年代经济的腾飞。职工工资总额(亿元)职工工资总额是指各单位在一定时期内直接支付给本单位全部职工的劳动报酬的总和,包括奖金、津贴、补贴、加班工资和其他工资(附加工资、保留工资以及调整工资补发的上年工资等)。职工工资从某种程度上来说是市民收入的主要来源。而收入比较高的话,居民用于消费和储蓄的金额也会有相应的提高,所以职工工资直接影响着银行存款。职工劳保福利费用(万元)劳保福利是指劳动保险和福利。为了保护工人职工的健康,减轻其生活中的困难,我国对劳动保险制定了相应的法律条文。福利指员工与工人福利之总称,亦指以企业员工为对象而实施的福利措施,包括法定的福利,企业主与工会所实施的提高职工生活水准的各种措施。由表可知,2000年,单位支付职工劳保福利费用的总额已经达到2521553万元,并且其比例每年以3%~8%的速度增长,已高达%,这一数据说明人们的基本生活标准可以得到保障,从而有更多的钱用于其它的消费和用于储蓄存款或其他金融投资。社会消费品零售总额(亿元)社会消费品零售总额是指各种经济类型的批发零售贸易业、餐饮业、制造业和其他行业对城乡居民和社会集团的消费品零售额和农民对非农业居民零售额的总和。包括售给城乡居民用于生活消费的商品(不包括住房)和售给机关、团体、部队、学校、企业、事业单位和城市街道居民委员会、农村村民委员会用公款购买的用作非生产、非经营使用的消费品。这个指标反映通过各种商品流通渠道向居民和社会集团供应生活消费品来满足他们生活需要的情况,是研究人民生活、社会消费品购买力、货币流通等问题的重要指标。全市财政收入(亿元)财政既然要提供公共物品来满足公共需要,就要从国内总收入(GDI——与生产指标GDP相对应的收入指标)中集中一部分收入,从这个意义上来理解,财政收入是指一定量的货币收入,即国家占有的以货币表现的一定量的国内总收入;财政收入又可以理解为一个分配过程,这一过程是财政运行的第一个阶段或第一个环节,在其中形成特定的分配关系或利益关系。财政收入按其形式分为税收、收费、债务收入、铸币税和通货膨胀税。财政运行是国民经济的运行的一个部分,国民经济的运行决定了财政的运行,而财政的运行也反过来影响国民经济的运行,直接影响投资、消费和进出口,影响GDP的增长和结构,影响收入分配和各阶层之间的收入差距,影响经济的稳定和可持续发展。外贸出口商品总额(亿美元)对外出口贸易一直以来是上海经济发展的重要环节及体现,也是赚取外汇,达到国际收支平衡和增加国际储备的前提条件。随着中国加入WTO,上海的对外贸易也越来越频繁且出口的商品数量和金额也大大的提高。目前国际货物买卖合同中买卖双方就支付条款的订立大多都通过银行采用现汇结算的方式。在国际货物买卖中使用的结算工具主要是货币和票据,而银行作为买卖双方的结算中介为其办理汇兑业务、信用证业务、承兑业务。前两者是银行存款业务衍生出来的结算业务,而承兑业务是以银行的信用来确保客户的信用。到2000年底,一般贸易出口增幅继续高于加工贸易,而出口产品结构调整也随之加快,高新技术产品和机电产品出口快速增长。3.回归方法与模型建立研究方法与原理运用多元线性逐步回归方法研究预测影响上海的银行存款的因素。逐步回归是按自变量对因变量的作用程度从大到小逐个引入回归方程,每引入一个变量同时检验方程中各个自变量的显著性,合格保留、不显著剔除,反复进行直到再没有显著的变量可以引入为止。回归分析是根据自变量的最有组合建立回归方程(模型)预测因变量的未来发展趋势。该方法的运用条件是有大量的观测统计数据,适用研究没有确定关系形式的因素对象,运用工具为SPSS统计软件。模型的建立及求解因为银行存款与大部分变量呈指数关系,所以把表的各个原始变量的50年数据进行对数变换(LN10()),并且把转换后的样本数据倒退8年后来建模。设多元线性回归的模型为:lnY=β0+β1X1+β2X2+β3X3+…+β9X9+β10X10其中:Y:全市银行存款(亿元)X1 ——全市居民储蓄(亿元) X6 ——职工工资总额(亿元)X2 ——从业人数(万人) X7 ——职工劳保福利费用(万元)X3 ——全市居民消费水平(元/人) X8 ——社会消费品零售总额(亿元)X4 ——全市银行贷款(亿元) X9 ——全市财政收入(亿元)X5 ——全社会固定资产投资总额(亿元) X10 —— 外贸出口商品总额(亿美元)注:模型中倒退的年数用(t-n)表示,其中n表示倒退几年。(t-n)不参与任何计算,它只做标识之用。利用对样本数据进行统计分析,运行后的输出的结果如表所示。表 逐步回归统计分析结果 CoefficientsModel Unstandardized Coefficients Standardized Coefficients t Std. Error Beta18 (Constant) .334居储7 .692 .146 .595 .000从人1 .604 .216 .029固投6 .046 .000财政4 .146 .000银贷4 .100 .813 .000劳福2 .189 .000工资1 .232 .754 .000财政3 .134 .000从人8 .336 .000从人2 .670 .479 .000银贷2 .520 .110 .440 .000劳福6 .418 .193 .305 .039即回归模型为:lnY=(t-7) +(t-1) -(t-6) -(t-4) +(t-4) -(t-2) +(t-1) -(t-3) -(t-8) +(t-2) +(t-2) +(t-6)所以,在倒退8年的50年数据样本中,银行存款的增长与前7年的全市居民储蓄,前1年、前8年、前2年的从业人数,前6年的全社会固定资产投资总额,前4年和前3年的全市财政收入,前4年和前2年的银行贷款,前2年和前6年的职工劳保福利费用,前1年的职工工资总额等因素之间有显著意义的相关关系。4.结论和评价模型评价进入因素的分析表 Variables Entered/Removed(a)Model Variables Entered Variables Removed Method1 居储7 . Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).2 工资7 . Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).3 固投8 . Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).4 从人1 . Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).5 . 工资7 Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).由于软件通过特定程序对上海市相关数据进行整体的统计运算,所以具有更强的客观性和公证性。从上表中可以看出,按自变量对因变量的作用程度从大到小首先引入的是前7年的居民储蓄,等到第五步时把之前进入的前7年的职工工资给剔除了,再后面的第14和第17步中把前8年的固定投资和前3年的银行贷款给剔除了。这3个被剔除的变量在引入变量越来越多的情况下被检验出其显著性不合格。除此之外,在10个自变量中,诸如全市居民消费水平、社会消费品零售总额、外贸出口商品总额没有进入模型。因为的外贸出口商品总额涨幅没有达到足以进入方程的显著性,所以被剔除了。不过,随着贸易全球化和中国国际地位的提高,上海的外贸出口总额也会不断的增加,在不久的将来会对银行存款起明显的作用。我们可以从表看到,在进入的因素中全社会固定资产投资总额、财政收入、前2年的职工劳保福利费用、前8年的从业人员与银行存款是负相关,即随着它们的增加加快,银行存款的增长会减慢,其中前2年的职工劳保福利费用影响最强,其系数为。前8年的从业人员、财政收入、全社会固定资产投资总额的影响顺次递减。比如说,全社会固定资产投资总额增加,表明了国有、集体、个体、联营、股份制、外商、港澳台商提供了对基本建设、更新改造、房地产开发投资和其他固定资产投资额,那么他们必须从银行拿出自己的存款,有时还需要向银行进行贷款来完成投资,所以银行的存款量会增加缓慢是可以想象的。又比如说财政收入,政府的财政收入是通过税收、收费等途径获得,如果国家对个人、企业所征取的税越多的话,个人与企业的支出就会增加,净收入也就变少了,而如果其用于消费的指出不变或提高的话,那么其用于银行存款的货币就会相应减少,从而导致全市银行存款的递增缓慢。而居民储蓄、银行贷款、职工的工资、前1年和前2年的从业人员、前6年的职工劳保福利费用与银行存款呈正相关,即随着它们的增加加快,银行存款的增长也会加快,其中前四年的银行贷款的影响最强,其系数为,其次是居民储蓄等等。比如说,职工工资的增加会使得人们的收入上升,收入上升后虽然有一部分会被用来支付消费,但绝大部分人们还是会把钱存入银行,用于各种类型的投资,这种行为使得银行存款的增加加快。又如:居民储蓄的增加,当然会直接影响银行存款量的增加,这是勿庸置疑的,因为居民储蓄是银行存款业务的主要内容,它是银行吸收资金的主要方式。再如:经济的发展会使得银行贷款量上升,银行想要通过贷款给个人或企业客户来获得更多利润,那么银行就会运用各种手段来增加吸引资金量。在这种情况下,社会上的闲置资金由于较高的收益而会流向银行,使得银行存款增加速度加快。从表中我们可以看到,随着进入的变量越多,F值由大变小,然后再由小变大,使得最后一步的F值达到,表明回归模型包括12个变量,且拟合度较高。自相关问题的诊断DW值一般要求~时,残差与自变量互为独立。从表可见回归模型的DW值为,说明该模型无自相关的问题,此模型可以被使用。表 Model Summary(s)Model R R Square Adjusted R Square Std. Error of 样本检验表年份 取对数值(y1) 取对预测值(y2) 相对误差(%)2001 以上的样本检验的相对误差的计算方法是用2001年~2003年各个取对预测值减去对应的取对数值之后再除以取对数值后得到的。其公式:相对误差=(y2-y1)/y1×100%样本检验的相对误差需不大于10%,表示所建立的模型是可以使用的。表中的所计算的相对误差的都小于10%,说明模型建立的较好。残差正态性检验图 银行存款对数的标准化残差直方图图表明:标准化残差的正态曲线的均值为0,标准差为,接近标准正态曲线,基本满足随机误差项正态分布的假设理论,模型拟合效果比较好。银行存款对数的正态概率图和残差散点图图 正态概率图图 散点图图表明:代表样本残差的数据点基本处在表示指定正态分布的直线上或周围,因此基本符合残差正态分布的假设理论。图表明:残差散点的分布随机均匀,且大多落在水平直线-2和2之间,所以可以判断残差与因变量之间相互独立性较高,基本满足残差独立的假设理论,模型的拟合效果比较好。结论综上所述,商业银行的存款不断的增加,可以反映上海居民的收入在不断地增加、生活品质也在不断的提高,更可以从侧面反映上海金融的飞速发展和经济的繁荣。我国加入世贸组织后,金融对外开放程度加深,国内各银行之间、外资银行与中资银行之间的竞争越来越激烈,而存款是竞争的重要领域。随着我国国民物质生活的丰富,消费观念的变化,投资渠道的增多,这些因素将深刻地影响客户存款需求的特性。目前我国商业银行负债以存款为主,负债结构单一,缺乏稳定性;同时银行特别是国有商业银行由于历史和体制的原因,存在资产质量差,不良贷款率高,资本金不足等问题,使得我国银行业积聚了大量的风险。因此,我国商业银行的存款产品必须进行契约设计的改进,完善其中的激励与约束对等的机制设计,创新存款产品种类,满足不同客户的个性化需求;同时要提高存款的稳定性。上海作为全国的金融中心,应该顺应时代的进步建立一个合理的金融体系并完善其制度,而商业银行作为金融的重要环节应不断地对自身进行改革和创新更好地为个人和企业客户服务,这对于上海人民的生活水平的提高和经济的稳定发展具有重要的意义和作用。参考文献[2]黄达.金融学[M].北京:中国人民大学出版社,2004[3]郑道平.货币银行学原理[M].北京:中国金融出版社,2005[4]陈共.财政学[M].北京:中国人们大学出版社,2004[6]彼得·K·奥本海姆,官青译.跨国银行业务[M].北京:中国计划出版社.2001[6]上海统计年鉴.

SPSS软件是“统计产品与服务解决方案”软件,是数据统计分析的一个重要的工具。下文是我为大家整理的关于spss统计分析论文的 范文 ,欢迎大家阅读参考!

统计分析软件SPSS的特点和应用分析

【摘要】通过文献资料法,介绍了统计分析软件SPSS的特点,并通过实例:用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的应用做了详细的介绍,旨在为学习SPSS软件的人们提供参考。

【关键词】统计分析软件;SPSS;独立样本;非参数检验

一、前言

统计分析软件SPSS是一款统计产品与服务解决方案的软件,其全称为“统计产品与服务解决方案(Statistical Product and Service Solutions)”。该软件是一款在统计中应用很广的统计分析软件,目前在各专业 毕业 论文经常可以看到它的身影,其应用范围广、方便快捷等特点吸引着众多的 爱好 者。本文通过对统计分析软件SPSS的功特点进行介绍,通过举例用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的操作用做了详细的介绍,为学习SPSS软件的人们提供参考。

二、SPSS软件的特点

(一)操作简便

SPSS软件的界面非常友好,除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。

(二)编程方便

具有第四代语言的特点,告诉系统要做什么,无需告诉怎样做。只要了解统计分析的原理,无需通晓统计 方法 的各种算法,即可得到需要的统计分析结果。对于常见的统计方法,SPSS的命令语句、子命令及选择项的选择绝大部分由“对话框”的操作完成。因此,用户无需花大量时间记忆大量的命令、过程、选择项。

(三)功能强大

具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。

(四)全面的数据接口

能够读取及输出多种格式的文件。比如由dBASE、FoxBASE、FoxPRO产生的*.dbf文件,文本编辑器软件生成的ASCⅡ数据文件, Excel 的*.xls文件等均可转换成可供分析的SPSS数据文件。能够把SPSS的图形转换为7种图形文件。结果可保存为*.txt,word,PPT及html格式的文件。

(五)灵活的功能模块组合

SPSS for Windows软件分为若干功能模块。用户可以根据自己的分析需要和计算机的实际配置情况灵活选择。

(六)针对性强

SPSS针对初学者、熟练者及精通者都比较适用。并且现在很多群体只需要掌握简单的操作分析,大多青睐于SPSS,像薛薇的《基于SPSS的数据分析》一书也较适用于初学者。而那些熟练或精通者也较喜欢SPSS,因为他们可以通过编程来实现更强大的功能。

三、实例分析――两个独立样本的检验(Test for Two Independent Sample)

例题:为了调查甲、乙两地土壤对 种植 同一种西瓜有没有影响,从这两个产地分别随机抽取同种的8只和7只西瓜,称重后得重量(市斤)如下:

甲(斤):、、、、、、、

乙(斤):、、、、、、

问:根据样本数据检验两地的土壤对种植西瓜在重量上是否有显著差异?

解:建立假设 H0:甲乙两地的西瓜重量没有显著差异;

H1:甲乙两地的西瓜重量有没有显著差异。

然后根据上面给出的数据建立数据文件,注意数据文件中有一个表示重量数据的变量和一个表示地区分组的变量。最后在数据编辑窗口进行检验。检验的具 体操 作过程如下:

第一步:单击Analyze Nonparametric Test 2 Independent Sample,打开Two-Independent-Sample对话框(见图1)。

第二步:选择检验的变量进入检验框中,选择分组变量进入Grouping Variable框中,单击Define Group键,打开Define Group对话框,将分组变量值分别键入两个框中,单击Continue返回主对话框(见图2):

第三步:在Test Type栏中,确定检验方法。

SPSS中提供了四种检验方式,几种检验方法侧重点不同,但都是先把两样本数据混合排序,再从不同的角度分析并检验两个独立总体的分布是否有显著的差异。有时这几种检验结果可能不一样,所以要结合数据的探索分析考察数据的分布状况作出结论。本文选择了常用的Mann-Whitney U曼―惠特尼检验和Kolmogorov-Smirnov Z K-S检验。

第四步:选择输出的结果形式及缺失值处理方式;

第五步:单击OK,得输出结果。

所以,以上两种检验结论是一致的。也就是说在两地种植的同一种西瓜地重量没有显著差异。

参考文献

[1]杜志渊.常用统计分析方法―SPSS应用[M].山东人民出版社,2011.

[2]刘宁元.运用SPSS对高职专业课程成绩进行相关分析[J].电脑与电信,2007(3).

[3]井海立.SPSS在数学试卷统计分析中的应用[J].科技信息(学术版),2006(10).

试谈SPSS软件在考试数据统计分析中的应用

摘要: SPSS软件是数据统计分析的一个重要的工具。本文作者利用SPSS软件对考试数据的相关性、检验假设进行了统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤,文中的方法对考试研究人员具有一定的指导意义。

关键词: SPSS软件 考试数据 统计分析 操作步骤

1. 引言

一份好的试卷须有好的测量指标来表明它的优良程度,试题有难度和区分度指标,试卷有效度和信度指标,这些是评价考试最主要的测量指标,但是仅有这些指标不足以反映一份试卷的实际测量效果,考试研究人员希望从考生的试卷统计分析中获取更多的信息来评价一份试卷。在计算机未普及的年代,考试成绩统计主要依靠人工阅卷,考试数据无法电子化存储,对考试数据分析统计难以实现。随着计算机的普及和信息化的推广,各种分析数据的软件应运而生,这些软件中汇集了统计学和测量学的分析工具,使得应用电子信息技术分析统计考试成绩数据成为可能,这些统计信息可以为教研部门、考试行政部门进行行政决策等提供非常重要的帮助。在众多的统计分析软件当中,SPSS是应用最多、影响最广泛的分析工具之一。在本文中,我们以SPSS软件为工具,对 教育 招生考试成绩的数据进行统计分析,分析主要着重于考试数据的相关性、假设检验等几个方面。

2. SPSS分析软件简介

“SPSS统计分析软件”的英文名称为“Statistical Package for the Social Science”,中文名称为“社会科学统计软件包”,它是世界著名的统计分析软件之一,在自然科学、社会科学的各个领域均有非常广泛的应用。SPSS是一个组合式软件包,它集数据整理、分析于一身,主要功能包括数据管理、统计分析、图表分析、输出管理等,该软件的统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类。

下面我们利用SPSS软件对考试数据的相关性、检验假设进行统计分析,介绍使用SPSS进行统计分析的一般方法和步骤。

3. 相关性分析

教育考试中,考试结果的信度,试题的区分度,每个题目得分与试卷总分的关系,以及题目之间的关系,等等,都是考试研究的重要内容,最主要的研究方法就是数据的相关性分析。在众多的教育考试数据的相关性分析方法中,Pearson相关系数法、Spearman相关系数法和Cronbach α信度系数法是比较常用的几种方法。

Pearson相关系数法计算公式:

式中x为第i个考生第j题的得分,y为第i个考生第k题的得分,为第j题的平均分,为第k题的平均分,n为测试样本量。该公式既可以计算两个连续变量之间的相关性,又可以计算一个双歧变量与一个连续变量之间的相关性。

Spearman相关系数法计算公式:

r=1-(2)

式中D为两个变量的秩序之差,n为样本容量。

Cronbach a信度系数法计算公式:

α= 1-(3)

式中n为试题数,s为第i题的标准差,s为总分的标准差。该公式实际上就是将考试中所有试题间相关系数的平均值(又称内部一致性)作为α信度系数。

对于给定的一组考生成绩数据,利用SPSS统计分析软件可以非常容易地定量分析考生某学科试卷总分和该学科某道题的相关性,以及各个题目之间的相关性。我们以Pearson相关系数分析为例,利用SPSS软件进行统计分析。

数据统计分析的对象是某省高考数学6道解答题的得分情况(不是整张试卷),数据源于该省的高考数据成绩。研究的目的是测量6道解答题每两个题目之间的相关性。

我们以SPSS 版本的软件为例,介绍利用SPSS进行数据统计分析的步骤(以Pearson相关系数法为例):

(1)将考试数据导入SPSS软件,在SPSS数据窗口中,顺序点击【Analyze】→【Correlate】→【Bivariate...】,系统弹出变量相关系数设置对话框。

(2)在该对话框中,将待计算的变量从左侧的变量列表中导入到右侧的“Variables”变量列表中,在本例中导入t1、t2、t3、t4、t5、t6共6个变量(t1―t6是6道解答题的变量名称)。在“Correlation Coefficients”相关系数选项中,选取“Pearson”复选框。

(3)在该对话框的“Test of Significance”设置区域,可以点选“Two-tailed”选项或者“One-tailed”,我们采用系统默认值。

(4)对话框中的 其它 选项取软件系统的默认值,点击【OK】,开始相关系数计算,系统弹出新的窗体输出运算的结果。本次输出的情况如下:

上表的统计结果可用于题目之间相关性的分析。表中的大部分题目的相关系数都比较适中,但题目T4和题目T5之间的相关程度远高于其它几个题目,我们可以确信这两者之间一定存在着比其他题目之间更紧密的关系,这是我们通过分析获取的重要信息,该信息表明这两个题目之间的相关性高于其他几个题目之间的相关性,这在大规模考试中是不应该出现的,需要在以后的命题考试中加以改进。

Spearman相关系数分析方法和上述分析方法类似,只需要在上述SPSS操作的第二个骤中选取“Pearson”复选框,程序就会按Pearson相关系数法进行统计分析,如果同时选中“Spearman”和“Pearson”复选框,程序将会同时计算按两种分析方法统计分析的数据,并会以不同的图表进行显示,而Cronbach a信度系数法计算方法与上述方法略有不同,其操作步骤如下:

(1)在SPSS数据窗口中,顺序点击【Analyze】→【Scale】→【Reliability Analysis...】,系统弹出“Reliability Analysis”信度分析设置对话框。

(2)将待计算的变量从左列的变量列表中导入到右侧的“items”变量中,在左下列的“model”选择项的下拉列表中确保选中“Alpha”(信度系数),点击“Statistics”选择项可以进行更为详细的参数设置,我们采用系统的默认值即可。

(3)参数设置完毕之后,点击【OK】,软件开始相关系数计算并输出运算结果。

4. 选择题的选项分析

在目前的教育招生考试中选择题是一种较常见的题型,考试研究人员关注较多的是对选择题基本特征、测量功能及其优缺点的理论探讨[1][2],对选择题干扰项的设计及其施测后的实际效果关注甚少,事实上施测后对题目各选项的有效性作出判断可为评价试题质量提供重要参考依据。我们利用统计中χ检验假设,对试卷中常见的选择题选择项进行统计分析。

教育考试的单项选择项一般设置为4个,其中仅有1个选择项是正确的。命题人员在设计选择项时,应当也必然对每道题目所有的选择项(正确选择项和干扰选择项)的考生作答情况作出预测,对考生作答的分布情况作出预估。考试结束后,研究人员应该对实测的情况与命题教师预测的情况进行对比分析,以检验考试效果是否达到了预测的目标。这和χ拟合度检验的思想具有一致性,因此可以尝试使用χ检验假设进行分析。

我们依据文献[3][4]的方法来介绍χ检验假设在考试数据分析中应用的基本原理,设变量E是命题者对某道试题的期望值,E=nP,n为样本容量,P为期望的相对频率,引入以下统计量:∑(O-E)/E,其中O为观察频数。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

我们需要进行的假设检验是:零假设H:选项的实测分布与期望分布相同;非零假设H:选项的实测分布与期望分布不同。

检验假设的思想:拟合度检验的统计量在确定的某种显著性水平下如果零假设是真,则检验统计量∑(O-E)/E呈近似χ分布,其自由度为研究变量的可能值减1;如果实测分布与期望的分布相当吻合,就不排除零假设,否则就排除零假设;最后对检验假设的结果进行解释。

数据分析的目的是判断考生实际的应答结果(实测数据)与命题期望的选择概率(期望数据)是否一致。我们随机抽取某省5542个高考考生的数学有效数据构成分析样本,利用SPSS进行统计分析。

SPSS数据统计分析的步骤如下:

(1)将考试数据导入SPSS软件,依次点击【Analyze】→【Nonparametric Tests】→【Chi-Square...】,弹出“Chi-Square Tests”对话框。

(2)将变量列表中待分析的题目序号导入到“Test Variables List”(检验变量列表)中,本例中题目的序号为t7。

(3)将对选择试题的每个选项的期望值依次输入到“Expected Values”所属的方框,具体操作方法是选中单选框“Values”,输入具体的期望数值,点击“Add”按钮,依次重复上述的步骤直至所有的选项的期望值输入完毕。

(4)点击【OK】,输出软件运算结果。

我们需要进行的假设检验,H:选项的实测分布与期望分布相同;H:选项的实测分布与期望分布不同。

假设检验的显著性水平为α=,χ=∑(O-E)/E,自由度为df=4-1=3,查χ分布表或利用相关软件可得P=,由于P>α,因此不能拒绝零假设,即选项的实测分布与期望分布相同。因此,检验结果在显著性水平时,没有足够的证据拒绝零假设,即可认为本题选项的实测分布与期望分布相同,也就是说本题的实际测试效果与命题教师预测的效果是一致的,命题教师准确地估计了考生的实际水平,这是分析获得的很重要的结论。

5. 结语

SPSS软件在考试数据统计分析中应用广泛,但大部分是集中在试题难度、均值、方差统计、考试数据的图表显示等几个方面,本文从一个新的角度利用SPSS软件对考试数据的相关性、检验假设等几个方面进行了尝试性统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤。从上述分析来看,软件操作步骤和统计分析过程十分简单、快捷,对于测量学和统计学基础不太好的数据分析统计人员来说,只要遵循一定的操作步骤,就可以进行分析。

参考文献:

[1]王孝玲.教育测量(修订版)[M].上海:华东师范大学出版社,2006.

[2]雷新勇.大规模教育考试:命题与评价[M].上海:华东师范大学出版社,2006.

[3]李伟明,冯伯麟,余仁胜.考试的统计分析方法[M].北京:高等教育出版社,1990.

[4]雷新勇.考试数据的统计分析和解释[M].上海:华东师范大学出版社,2007.

猜你喜欢:

1. 统计学数据分析论文

2. spss统计分析实习心得

3. 统计学学年论文

4. 统计学分析论文

多元回归毕业论文选题

毕业论文的课题方向的确定通常需要经过以下步骤:1. 选择研究领域:首先,研究生需要选择自己感兴趣的研究领域,例如:金融、管理、市场营销等。在选择研究领域时,可以考虑自己的专业知识和职业发展方向等因素。2. 查阅文献:在确定研究领域后,研究生需要查阅相关的学术文献、报告和新闻报道等,了解该领域的研究现状、热点问题和未来发展方向等,以便确定具体的研究方向和课题。3. 确定研究问题:在了解研究领域的基础上,研究生需要确定具体的研究问题,即要研究的核心问题或假设。研究问题应该具有一定的研究价值和实际意义,并且能够与自己所学专业的相关领域联系起来。4. 确定研究方法:在确定研究问题后,研究生需要确定具体的研究方法和技术,例如:文献综述、实证研究、案例研究等。研究方法应该能够有效地回答研究问题,并且符合学术规范和要求。5. 寻找指导老师:在确定研究方向和课题后,研究生需要寻找合适的指导老师。指导老师通常会根据自己的经验和专业知识,为研究生提供指导和支持。总之,确定毕业论文的课题方向需要考虑多个因素,研究生应该根据自己的兴趣、专业知识和职业发展方向等因素来确定具体的研究方向和课题,同时还需要根据导师的指导和建议来进行选择和调整。

关于毕业论文的选题方向

导语:选题方向向一般是指学生在校期间,或者相关科研工作者在申报撰写论文过程中需要明确题目的研究方向。应在所研究课题历史基础上提出自己独特或者有所创新的研究方向以丰富学科知识体系。

1.逆向物流系统的构建

2. 民营物流发展对策研究

3. 物流配送线路优化研究(要求根据该公司的日均需求量情况先选择合适的车型(车辆型号、载重吨、体积限制、油耗等均需注明),再根据某一次的具体配送量进行线路设计或优化,优化结果要包括具体的装载方案(用两个方向的`剖面图表示)和线路行走方案。)

4. 配送中心选址规划的方法与应用(要求先采用一两种合适的方法进行定量分析,再在定量分析的结果上结合实际地理位置情况在周围找几个候选点,考虑其他因素(如租金、交通条件等)采用综合因素评价法或层次分析法选出具体的位置)

5. 物流市场容量预测研究(不能只用时间序列预测法,即只搜集历史数据预测,还必须分析相关因素,采用回归法预测。如某港口的吞吐量预测,除了搜集该港口历年来的吞吐量用时间序列法预测外,还要细分到货物,通过预测进出该港口的每一种货物量,加总得到该港口未来的吞吐量)

6. 第三方物流的运作模式与策略

7. 基于供应链下的库存策略研究

8. 基于电子商务下的物流模式探讨

9. 物流企业风险评价

10. 企业仓库平面布局(要求将部门内部大致布局也画出来)

11. 都市圈物流一体化研究(物流资源配置、同城配送体系、物流市场、物流战略联盟、公共信息平台、人力资源开发及共享、政策体系)

12. 供应链融资解决方案(采购、运营、销售阶段的供应链融资、风险控制、融资方案、方案评价)

13. 绿色供应链管理(与传统供应链的比较、理论基础、主要内容及特征分析、举例说明如何实现绿色供应链管理,存在的问题与对策)

14. 物流标准化发展研究(目前情况、与发达国家的差距、存在的困难、如何实现标准化)

毕业论文多元回归共线

在我认知范围内,多重共线性问题一直不是计量里的什么大问题,回归之前看看各变量之间的相关系数基本就可以确定是否需要进一步检验了,线性相关性比较高,那就直接剔除吧!异方差检验我也没有做过,我一般直接就用稳健标准差,从来不用一般标准差!至于自相关检验这个问题也是没有做过的!我认为做什么检验和文章关系比较大!我做过一篇FDI的文章,里面采用FDI存量数据,存量数据肯定有很强自相关性,于是我就采用动态面板估计了,后来经过几个模型的比对发现,FDI存量的自相关性对回归结果影响很小。计量实证还是应该为自己的思想服务,检验越多、方法越复杂不见得就一定是好事!

包括筛选变量法, 岭回归分析法, 主成分回归法和偏最小二乘回归法。关键词: 回归、SASSTAT、共线性、筛选变量、岭回归、主成分回归、偏最小二乘回归。中图分类号: 0212; C8 文献标识码: A 回归分析方法是处理多变量间相依关系的统计方法。它是数理统计中应用最为广泛的方法之一。在长期的大量的实际应用中人们也发现: 建立回归方程后, 因为自变量存在相关性, 将会增加参数估计的方差, 使得回归方程变得不稳定; 有些自变量对因变量(指标) 影响的显著性被隐蔽起来; 某些回归系数的符号与实际意义不符合等等不正常的现象。这些问题的出现原因就在于自变量的共线性。本文通过例子来介绍自变量共线性的诊断方法以及使用SA SSTA T 软件6. 12 版本中REG 等过程的增强功能处理回归变量共线性的一些方法。一、共线性诊断共线性问题是指拟合多元线性回归时, 自变量之间存在线性关系或近似线性关系。共线性诊断的方法是基于对自变量的观测数据构成的矩阵X′X 进行分析, 使用各种反映自变量间相关性的指标。共线性诊断常用统计量有方差膨胀因子V IF (或容限TOL )、条件指数和方差比例等。方差膨胀因子V IF 是指回归系数的估计量由于自变量共线性使得其方差增加的一个相对度量。对第i 个回归系数, 它的方差膨胀因子定义为 V I F i = 第i 个回归系数的方差自变量不相关时第i 个回归系数的方差 = 1 1 - R 2 i = 1 TOL i 其中R 2 i 是自变量xi 对模型中其余自变量线性回归模型的R 平方。V IFi 的倒数TOL i 也称为容限( To lerance )。一般建议, 若V IF> 10, 表明模型中有很强的共线性问题。若矩阵X′X 的特征值为d 2 1 ≥d 2 2 ≥…≥d 2 k, 则X 的条件数 d1 dk 就是刻划它的奇性的一个指标。故称 d1 dj (j= 1, …, k) 为条件指数。一般认为, 若条件指数值在10 与30 间为弱相关; 在30 与100 间为中等相关; 大于100 表明有强相关。对于大的条件指数, 还需要找出哪些变量间存在强的线性关系。因为每个条件指数对应一 9 4 处理多元线性回归中自变量共线- 性的几种方法个特征向量, 而大的条件指数相应的特征值较小, 故构成这一特征向量的变量间有近似的线性关系。在统计中用方差比例来说明各个自变量在构成这个特征向量中的贡献。一般建议, 在大的条件指数中由方差比例超过0. 5 的自变量构成的变量子集就认为是相关变量集。二、筛选变量的方法变量筛选的一些方法除了把对因变量Y 影响不显著的自变量删除之外, 还可以从有共线关系的变量组中筛选出对因变量Y 影响显著的少数几个变量。例 1 (水泥数据) 某种水泥在凝固时放出的热量Y (卡克) 与水泥中下列四种化学成份有关: x1 ( 3CaO. A l2O3 的成份)、x2 (3CaO. SiO2 的成份)、x3 (4CaO. A l2O3. Fe 2 O3 的成份) 和x4 (2CaO. SiO2 的成份)。共观测了13 组数据(见表1) , 试用REG 过程分析水泥数据, 求出Y 与 x1, x2, x3, x4 的最优回归式。 表1 水泥数据序号 x1 x2 x3 x4 Y 1 2 3 4 5 6 7 8 9 10 11 12 13 7 1 11 11 7 11 3 1 2 21 1 11 10 26 29 56 31 52 55 71 31 54 47 40 66 68 6 15 8 8 6 9 17 22 18 4 23 9 8 60 52 20 47 33 22 6 44 22 26 34 12 12 78. 5 74. 3 104. 3 87. 6 95. 9 109. 2 102. 7 72. 5 93. 1 115. 9 83. 8 113. 3 109. 4 解 (1) 首先用REG 过程对自变量的共线性进行诊断, 只需在MODEL 语句的斜杠() 后使用选项V IF 和COLL INO IN T (或 COLL IN ) , 以下SA S 程序输出的部分结果见输出1. 1 (假设表1 中的数据已生成SA S 数据集D1)。 p roc reg data= d1; model y= x1- x4 vif co llino int; run; 由输出1. 1 的参数估计部分, 可以得出: ① 4 个自变量的方差膨胀因子( V IF ) 均大于10, 最大为282. 51, 表示变量之间有严重的多重共线关系。② 回归方程的截距项= 0 的假设是相容的( p 值= 0. 3991) ; ③ 所有自变量在Α= 0. 05 的显著水平下对因变量的影响均不显著(有三个变量的p 值大于0. 5) , 而回归方程是高度显著的(p 值= 0. 0001, 输出1. 1 没有显示) , 这说明自变量对因变量的显著影响均被变量间的多重相关性隐藏了。由输出1. 1 的共线性诊断部分, 可以得出: ① 最大条件指数37. 1> 30, 说明4 个自变量间有中等相关关系; ② 与最大条件指数在一行的4 个变量的方差比例均大于0. 5, 这说明这4 个变量就是一个具有中等相关的变量集。 输出1. 1 水泥数据共线性诊断的部分结果 (2) 用逐步回归方法从相关变量集中选出“最优”回归子集, 当引入和删除的显著性水平Α取为0. 05 时, 入选的自变量为x1 和 x4; 当显著性水平 Α取为 0. 10 或0. 15 时, 则入选的自变量为x1 和x2。可见用逐步筛选的方法得到的回归子集与显著水平的选取 0 5 数理统计与管理 20 卷 5 期 2000 年9 月有关, 选出的子集是某个较优的回归方程。容易验证这里得到的两个子集中变量对Y 的影响都是高度显著的, 且自变量的方差膨胀因子V IF 值都小于1. 1, 表明已没有共线问题。 ( 3) 用全子集法计算所有可能回归, 从中选出最优的回归方程。以下 SA S 程序中, MODEL 语句斜杠() 后的选项指出用R 2 选择法, 要求对每种变量个数输出二个最佳的回归子集, 并输出均方根误差、CP、A IC 和修正R 2 统计量, 产生的结果见输出1. 2。 p roc reg data= d431; model y= x12x4 select ion= rsquare best= 2 cp aic rm se adjrsq; run; 输出1. 2 对水泥数据计算所有可能回归的部分结果 在模型中变量个数固定为2 的回归子集中选出的最优回归子集是x1 和x2, 其次是x1 和 x4。如果按均方根误差最小的准则、修正R 2 最大准则及A IC 最小准则, 选出的最优子集都是 x1、x2 和x4。但在回归系数的显著性检验中, x4 对Y 的作用不显著( p= 0. 2054) ; 且x2 和x4 的方差膨胀因子V IF 值> 10, 共线诊断的结论也说明x2 和x4 是相关的变量集。而按CP 统计量最小淮则选出的最优回归子集为x1 和x2。综合以上分析可得出Y 与x1、x2 的回归方程是可用的最优方程。用筛选变量的方法从有共线性的变量组中筛选出对因变量Y 影响显著的若干个变量来建立最优回归式, 不仅克服了共线性问题, 且使得回归式简化; 但有些实际问题希望建立Y与 给定自变量的回归式, 既使自变量有共线性问题, 如经济分析中的问题。下面三种方法都是针对这类问题而给出的方法。三、岭回归方法在经典多元线性回归分析中, 参数Β= ( Β0, Β1,. . . , Βm ) ′的最小二乘估计b= ( b0, b1,. . . , bm ) ′的均方误差为E{ ( b- Β) ′(b- Β) }, 当自变量存在多重共线关系时, 均方误差将变得很大, 故从均方误差的角度看, b 不是Β的好估计。减少均方误差的方法就是用岭回归估计替代最小二乘估计。设k≥0, 则称 b (k) = (X ′X + k I ) - 1 X ′Y为Β的岭回归估计。用岭回归估计建立的回归方程称为岭回归方程。当k= 0 时b (0) = b 就是Β的最小二乘估计。从理论上可以证明, 存在k> 0, 使得b (k) 的均方误差比b 的均方误差小; 但使得均方误差达到最小的k 值依赖于未知参数Β和Ρ 2 。因此k 值的确定是岭回归分析中关键。在实际应用中, 通常确定k 值的方法有以下几种: ① 岭迹图法, 即对每个自变量xi, 绘制随k 值的变化岭回归估计bi (k) 的变化曲线图。一般选择k 使得各个自变量的岭迹趋于稳定。②方差膨胀因子法, 选择k 使得岭回归估计的V IF< 10。③ 控制残差平方和法, 即通过限制b 1 5 处理多元线性回归中自变量共线- 性的几种方法 ( k ) 估计的残差平方和不能超过cQ (其中c> 1 为指定的常数, Q 为最小二乘估计的残差平方和) 来找出最大的k 值。下面通过例子来介绍岭回归分析。例2: 经济分析数据的岭回归分析 考察进口总额Y 与三个自变量: 国内总产值x1, 存储量x2, 总消费量x3 (单位均为十亿法郎) 有关。现收集了1949 年至1959 年共11 年的数据(见表2)。对表2 的数据试用REG 过程求进口总额与总产值、存储量和总消费量的定量关系式。 表2 经济分析数据序号 x1 x2 x3 Y 1 2 3 4 5 6 7 8 9 10 11 149. 3 161. 2 171. 5 175. 5 180. 8 190. 7 202. 1 212. 4 226. 1 231. 9 239. 0 4. 2 4. 1 3. 1 3. 1 1. 1 2. 2 2. 1 5. 6 5. 0 5. 1 0. 7 108. 1 114. 8 123. 2 126. 9 132. 1 137. 7 146. 0 154. 1 162. 3 164. 3 167. 6 15. 9 16. 4 19. 0 19. 1 18. 8 20. 4 22. 7 26. 5 28. 1 27. 6 26. 3 解 (1) 使用REG 过程来建立 Y 与x1、x2、x3 的回归关系式。以下 SA S 程序产生的完整输出结果这里省略了( 假设表 2 中的数据已生成 SA S 数据集D2)。 p roc reg data= d2 co rr; model y = x1 - x3 vif co llin; run; 由REG 过程得到的回归方程为: Y = - 10. 128 - 0. 051 x 1 + 0. 587 x 2 + 0. 287 x 3 变量x 1 的系数为负值, 这与实际情况不符。出现此现象的原因是变量x 1 与x 3 线性相关: Θ(x 1, x 3) = 0. 997。在MOD EL 语句后加上选项V IF 和COL L IN 产生的输出(省略了) 可以更清楚地看出x 1 和x 3 是多重相关的变量集。为了消除变量之间的多重共线关系, 岭回归就是一个有效的方法。 (2) 在MOD EL 语句的斜杠() 后由选项R IDGE = 指定一组k 值来完成岭回归分析。在 PL OT 语句中由选项R IDGEPL OT 要求绘制岭迹图。PROC R EG 语句的选项OU T ES T = OU T 2 要求把这一组k 值的岭回归估计送到输出数据集OU T 2 中, 选项OU TV IF 还要求把岭回归估计的方差膨胀因子( V IF ) 送到输出集中。以下SA S 程序的部分输出结果见输出2. 1 和输出2. 2。 p roc reg data= d2 outest= out2 graphics outvif; model y= x1- x3 ridge= 0. 0 to 0. 1 by 0. 01 0. 2 0. 3 0. 4 0. 5; p lo t ridgep lo t; p roc p rint data= out2; run; 输出2. 1 经济分析数据的岭迹图 2 5 数理统计与管理 20 卷 5 期 2000 年9 月 由岭迹图可以看出, 当k≥0. 02 后, 岭迹曲线趋于稳定。取k= 0. 02 的岭回归估计来建立岭回归方程, 由输出2. 2 可以写出岭回归方程式为: Y = - 8. 9277 + 0. 057 x 1 + 0. 59542 x 2 + 0. 127 x 3 这时得到的岭回归方程中回归系数的符号都有意义; 各个回归系数的方差膨胀因子均小于3 (见输出2. 2 中OBS 为6 的那一行) ; 岭回归方程的均方根误差(- RM SE- = 0. 57016) 虽比普通最小二乘回归方程的均方根误差( - RM SE- = 0. 48887) 有所增大, 但增加不多。输出2. 2 经济分析数据的输出数据集(部分) 四、主成分回归法主成分分析是将具有多重相关的变量集综合得出少数几个互不相关的综合变量——主成分的统计方法。主成分回归首先找出自变量集的主成分, 然后建立Y 与互不相关的前几个主成分的回归关系式, 最后还原为原自变量的回归方程式——主成分回归式。例3: 经济分析数据的主成分回归分析 解 使用REG 过程做主成分回归。在SA SSTA T 软件的6112 版本中, 用REG 过程提供的选项可完成主成分回归的计算。SA S 程序如下: p roc reg data= d2 outest= out3 ; model y= x1- x3 pcom it= 1, 2 outvif; p roc p rint data= out3; run; 在MODEL 语句的斜线() 后通过选项PCOM IT = 1, 2 表示要求删去最后面(即最不重要) 的1 个或2 个主成分之后, 用前面m - 1 个主成分或前面m - 2 个主成分( m 为自变量的个数, 此例中m = 3) 进行主成分回归。主成分回归的结果存放在SA S 数据集OU T3 中。由输出3. 1 可以得出删去第三个主成分(PCOM IT= 1) 后的主成分回归方程(见输出3. 1 中OBS 为3 的那一行) 为 Y= - 9. 1301+ 0. 07278 x1+ 0. 60922 x2+ 0. 10626 x3 输出3. 1 经济分析数据主成分回归的结果 这个主成分回归方程中回归系数的符号都是有意义的; 各个回归系数的方差膨胀因子均小于1. 1 (见输出3. 1 中OBS 为2 的那一行) ; 主成分回归方程的均方根误差( - RM SE- = 0. 55) 虽比普通回归方程的均方根误差( - RM SE- = 0. 48887) 有所增大, 但增加不多。 3 5 处理多元线性回归中自变量共线- 性的几种方法五、偏最小二乘回归法偏最小二乘( PL S ) 回归是工业应用中用于软建模的流行方法。当多个因变量间以及多个自变量间存在严重的多重相关时, PL S 是构造预测模型的一种有效方法。偏最小二乘回归的基本作法是首先在自变量集中提取第一潜因子 t1 ( t1 是x 1, x 2, …, xm 的线性组合, 且尽可能多地提取原自变量集中的变异信息, 比如第一主成分) ; 同时在因变量集中也提取第一潜因子u1, 并要求t1 与u1 相关程度达最大。然后建立因变量Y 与 t1 的回归, 如果回归方程已达到满意的精度, 则算法终止。否则继续第二轮潜在因子的提取, 直到能达到满意的精度为止。若最终对自变量集提取l 个潜因子 t1, t2, …, tl , 偏最小二乘回归将通过建立Y与t1, t2, …, tl 的回归式, 然后再表示为Y 与原自变量的回归方程式。 SA S S TA T 软件6. 12 版本提供一个试验性过程PL S (在SA S 系统8. 0 版本中PL S 已作为正式过程提供给用户) 可完成偏最小二乘回归。以下仍以经济分析数据为例介绍偏最小二乘回归。例4: 经济分析数据的偏最小二乘回归分析 解 使用PL S 过程做偏最小二乘回归。以下SA S 程序中选项M ETHOD= 规定抽取因子的方法为SIM PL S, 这是一个比标准PL S 更有效的算法; 选项CV = ON E 要求用删去一个观测的交叉确认方法决定抽取潜在因子的个数; OU TMODEL = 命名存放模型信息的输出数据集为O454 (输出的部分结果见输出4. 1)。 p roc p ls data= d2 outmodel= out4 cv= one method= simp ls ; model y= x1- x3 ; p roc p rint data= out4; run; 输出4. 1 经济分析数据偏最小二乘回归的结果 输出4. 1 的第一部分给出抽取潜在变量的个数及相应的用于度量拟合效果的预测残差平 4 5 数理统计与管理 20 卷 5 期 2000 年9 月方和( PRESS ) 的均方根值, 并指出在L = 2 时预测残差平方和的均方根达最小。输出的第二部分给出第一、二个潜在变量所解释的变差的百分数(包括自变量和因变量两方面) ; 输出的第三部分给出所拟合的模型的信息(数据集OU T4 的内容)。其中OBS 为2 和3 的行给出自变量和因变量的均值和标准差; OBS 为7 的行给出抽取二个潜在因子时的偏最小二乘估计, 由估计值可以写出标准化回归方程为( Y 和xζ表示Y 和x 的标准化变量) : Y = 0. 477 x 1 + 0. 2212 x 2 + 0. 486 x 3 用原始变量可表示为 Y = - 8. 2486 + 0. 0677 x 1 + 0. 6094 x 2 + 0. 1070 x 3 以上偏最小二乘回归方程中回归系数的符号都是有意义的。偏最小二乘回归的均方根误差 (0. 5872) 比普通最小二乘回归的均方根误差(- RM SE- = 0. 48887) 有所增大, 但增加不多。偏最小二乘回归对研究很多因变量及很多自变量的相依关系时更能显示其特点, 此例变量个数少, 故没能看出太多的优点。

  • 索引序列
  • 毕业论文多元回归模型
  • 计量多元回归模型毕业论文
  • spss多元回归毕业论文
  • 多元回归毕业论文选题
  • 毕业论文多元回归共线
  • 返回顶部