首页 > 毕业论文百科 > 组合数学毕业论文选题方向

组合数学毕业论文选题方向

发布时间:

组合数学毕业论文选题方向

信息方向,可以去遍软件数学史方面,可以吹牛

关于【组合数学】的论文 生活中矩阵的应用摘要:矩阵作为一种重要的工具,在生活的方方面面都存在应用。比如科学地选彩票号码,图形的变换处理,控制监控系统都存在了矩阵的痕迹。矩阵在各个领域的应用为我们展示了矩阵的广泛实用性。矩阵实现了对组合的优化,对质量的管理优化,会变得越来越重要。关键词:矩阵 应用 优化 一.矩阵的概念在开始讨论矩阵应用前,先了解一下矩阵及相关的一些概念。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵,这一概念由19世纪英国数学家凯利首先提出。一些矩阵在农业,经济,通信等领域都存在许多特别的应用。二.矩阵的特别的应用 1.矩阵应用在选彩票号码一些彩民由于未了解“旋转矩阵”的作用,都采取旧式的复式投注方式(即完全复式),完完整整地拿去打彩,一些对复式投注进行深入研究的彩民发现进行复式投注浪费了不少成本。据研究者发现约有三分之一号码组合,实际上是不可能中奖或极难中奖的。据说在美国彩票史上,Gail Howard运用一种叫做“旋转矩阵”投注选号法,奇迹般地中出了74个大奖。这种“旋转矩阵”法,是一种基于“旋转矩阵”数学原理构造的选号法,其核心是:以极低的成本实现复式投注的效果。那么如何以极低的成本实现复式投注的最佳效果呢?这是由“旋转矩阵”法优点决定的。实际上,旋转矩阵是教你如何科学地组合号码。与完全复式投注组合号码的方法相比,旋转矩阵有着投入低、中奖保证高的优点。举个例子讲,10个号码的中6保5型的旋转矩阵的含义就是,你选择了10个号码,如果其中包含了6个中奖号码,那么运用该矩阵提供的14注号码,你至少有一注中对5个号码的奖。本矩阵只要投入28元,而相应的复式投注需要投入420元。大家知道,用10个号码,只购买其中的14注,如果你胡乱组合的话,即使这10个号码中包含有6个中奖号码,你也很可能只中得一些小奖。而运用旋转矩阵的话,就可以得到一个对5个号码的奖的最低中奖保证。旋转矩阵是世界上著名的彩票专家、澳大利亚数学家底特罗夫研究的,它可以帮助您锁定喜爱的号码,提高中奖的机会。首先您要先选一些号码,然后,运用某一种旋转矩阵,将你挑选的数字填入相应位置。如果您选择的数字中有一些与开奖号码一样,您将一定会中一定奖级的奖。当然运用这种旋转矩阵,可以最小的成本获得最大的收益,且远远小于复式投注的成本。 (1)旋转矩阵的原理在数学上涉及到的是一种组合设计:覆盖设计。而覆盖设计,填装设计,斯坦纳系,t-设计都是离散数学中的组合优化问题。2.矩阵在透视投影应用三维计算机图形学中另外一种重要的变换是透视投影。与平行投影沿着平行线将物体投影到图像平面上不同,透视投影按照从投影中心这一点发出的直线将物体投影到图像平面。这就意味着距离投影中心越远投影越小,距离越近投影越大。 最简单的透视投影将投影中心作为坐标原点,z = 1 作为图像平面,这样投影变换为 x' = x / z; y' = y / z,用齐次坐标表示为:这个乘法的计算结果是 (xc,yc,zc,wc) = (x,y,z,z)。在进行乘法计算之后,通常齐次元素 wc 并不为 1,所以为了映射回真实平面需要进行齐次除法,即每个元素都除以 wc: 更加复杂的透视投影可以是与旋转、缩放、平移、切变等组合在一起对图像进行变换。比如给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转 这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。3.矩阵在质量问题中的运用 矩阵是从多维问题的事件中,找出成对的因素,排列成矩阵图,然后根据矩阵图来分析问题,确定关键点的方法,它是一种通过多因素综合思考,探索问题的好方法。 在复杂的质量问题中,往往存在许多成对的质量因素.将这些成对因素找出来,分别排列成行和列,其交点就是其相互关联的程度,在此基础上再找出存在的问题及问题的形态,从而找到解决问题的思路。 矩阵图的形式:A为某一个因素群,a1、a2、a3、a4、…是属于A这个因素群的具体因素,将它们排列成行;B为另一个因素群,b1、b2、b3、b4、…为属于B这个因素群的具体因素,将它们排列成列;行和列的交点表示A和B各因素之间的关系。按照交点上行和列因素是否相关联及其关联程度的大小,可以从中得到解决问题的启示。 质量管理中所使用的矩阵图,其成对因素往往是要着重分析的质量问题的两个侧面,如生产过程中出现了不合格品时,着重需要分析不合格的现象和不合格的原因之间的关系,为此,需要把所有缺陷形式和造成这些缺陷的原因都罗列出来,逐一分析具体现象与具体原因之间的关系,这些具体现象和具体原因分别构成矩阵图中的行元素和列元素。 矩阵图法的用途十分广泛.在质量管理中,常用矩阵图法解决以下问题: ①把系列产品的硬件功能和软件功能相对应,从中找出研制新产品或改进老产品的切入点,进行多变量分析、研究从何处入手以及以什么方式收集数据 。②明确应保证产品质量特性及与管理机构或保证部门的关系,使质量保证体制更可靠; ③当生产工序中存在多种不良现象,且它们具有若干个共同的原因时,搞清这些不良现象及其产生原因的相互关系,进而把这些不良现象一举消除。 ④明确产品的质量特性与试验测定仪器、试验测定项目之间的关系,力求强化质量评价体制或使之提高效率;(2)三,对矩阵应用的感悟 上述的矩阵应用说明了矩阵不仅仅是解方程组的工具,而且它是一种有用的工具,不仅仅在数学领域,还在经济,计算机领域等领域。相信在不久的未来,矩阵会变得越来越重要。矩阵的作用会越来越多地让人们发现。在线性代数数学书中,方程组可以转换为矩阵,再通过矩阵来简单,快速地解决问题。在质量管理问题上,它采用矩阵图来找出切入点,了解原因,使质量效率提高。 相信在不久的未来,矩阵对于优化问题的应用会越来越广泛,触及面会越来越多。矩阵是生活变得更简单,方便。参考文献:[1] 《科学通报》蒋昌俊,吴哲辉..,1989. [2] 求解约束矩阵方程及其最佳逼近的迭代法的研究彭亚新.湖南大学,2005.

如果这两个不行,你可以把这两篇论文综合一下哦

毕业论文同组选题方向

课题研究方向一般是指学生在校期间,或者相关科研工作者在申报撰写论文过程中需要明确的研究方向。课题研究方向应在所研究课题历史基础上提出自己独特或者有所创新的研究方向以丰富学科知识体系。

论文题目由教师指定或由学生提出,经教师同意确定。均应是本专业学科发展或实践中提出的理论问题和实际问题。

通过这一环节,应使学生受到有关科学研究选题,查阅、评述文献,制订研究方案,设计进行科学实验或社会调查,处理数据或整理调查结果,对结果进行分析、论证并得出结论,撰写论文等项初步训练。

扩展资料:

注意事项

1、研究课题的基础工作——搜集资料。考生可以从查阅图书馆、资料室的资料,做实地调查研究、实验与观察等三个方面来搜集资料。搜集资料越具体、细致越好,最好把想要搜集资料的文献目录、详细计划都列出来。

2、研究课题的重点工作——研究资料。考生要对所搜集到手的资料进行全面浏览,并对不同资料采用不同的阅读方法,如阅读、选读、研读。

3、研究课题的核心工作――明确论点和选定材料。在研究资料的基础上,考生提出自己的观点和见解,根据选题,确立基本论点和分论点。

参考资料来源:百度百科-毕业论文

毕业论文的课题方向的确定通常需要经过以下步骤:1. 选择研究领域:首先,研究生需要选择自己感兴趣的研究领域,例如:金融、管理、市场营销等。在选择研究领域时,可以考虑自己的专业知识和职业发展方向等因素。2. 查阅文献:在确定研究领域后,研究生需要查阅相关的学术文献、报告和新闻报道等,了解该领域的研究现状、热点问题和未来发展方向等,以便确定具体的研究方向和课题。3. 确定研究问题:在了解研究领域的基础上,研究生需要确定具体的研究问题,即要研究的核心问题或假设。研究问题应该具有一定的研究价值和实际意义,并且能够与自己所学专业的相关领域联系起来。4. 确定研究方法:在确定研究问题后,研究生需要确定具体的研究方法和技术,例如:文献综述、实证研究、案例研究等。研究方法应该能够有效地回答研究问题,并且符合学术规范和要求。5. 寻找指导老师:在确定研究方向和课题后,研究生需要寻找合适的指导老师。指导老师通常会根据自己的经验和专业知识,为研究生提供指导和支持。总之,确定毕业论文的课题方向需要考虑多个因素,研究生应该根据自己的兴趣、专业知识和职业发展方向等因素来确定具体的研究方向和课题,同时还需要根据导师的指导和建议来进行选择和调整。

投资组合方向的毕业论文

好写。个人投资者也需要在有限的条件下进行适当的投资组合以规避投资风险因此,证券投资组合的规模既不能过度分散也不能过度集中.投资组合规模、风险和收益之间存在最优化。基于和声搜索算法的投资优化组合求解算法,毕业设计(论文)工作自11年06月02日起至11年09月26日止三、毕业设计,以互联网技术为依托,基于投资组合的个人理财系统应运而生。

现在免费的哪里有啊,唉,社会不一样了。

不好写投资组合是由投资人或金融机构所持有的股票、债券、金融衍生产品等组成的集合。目的是分散风险。投资组合可以看成几个层面上的组合。投资组合优化是指应用概率论与数理统计、最优化方法以及线性代数等相关数学理论方法。主要看对平时知识的掌握和平时的积累。 毕业论文从文体而言,它也是对某一专业领域的现实问题或理论问题进行 科学研究探索的具有一定意义的论文。一般安排在修业的最后一学年(学期)进行。

数学教学方向毕业论文选题

数学教育专业自考毕业论文怎么定选题?数学教育专业自考毕业论文一般多从教育方法此类方向探讨。

数学教育专业自考毕业论文的选题很多,可以从以下几个中选择:生活中处处有数学、解数学竞赛题的整体策略、谈数学解题中发掘隐含条件的若干途径、论数学教育中性别差异的影响、逆向思维在数学论证中的作用及培养、谈小学、初中数学的衔接 、容斥原理及其应用、从高中课程改革看大学课程改革 9、信息化教育问题、数学素质教育中的教师素质问题、 浅析课堂教学的师生互动。

毕业论文申请流程

1、提交资料报名

2、缴纳论文答辩费用

3、论文选题

4、提交论文初稿

5、论文教师指导、修改

6、论文定稿

7、答辩

如果你想申请学位证书,论文一般要求评级达到“良好”及以上,不是简简单单糊弄过去就好,从选题、写作、格式上都需要和论文指导老师反复沟通、修改各种细节。

备注:一般从开始到定稿需要差不多半年的时间,切记不可从国内外参考文献或样书上一字不差的誊写。

数学专业毕业论文选题方向如下:

1、并行组合数学模型方式研究及初步应用。

2、数学规划在非系统风险投资组合中的应用。

3、金融经济学中的组合数学问题。

4、竞赛数学中的组合恒等式。

5、概率方法在组合数学中的应用。

6、组合数学中的代数方法。

7、组合电器局部放电超高频信号数学模型构建和模式识别研究。

8、概率方法在组合数学中的某些应用。

9、组合投资数学模型发展的研究。

10、高炉炉温组合预报和十字测温数学建模。

11、基于数学形态学-小波分析组合算法的牵引网故障判定方法。

12、证券组合投资的灰色优化数学模型的研究。

13、一些算子在组合数学中的应用。

14、概率方法在组合数学及混合超图染色理论中的应用。

15、竞赛数学中的组合恒等式。

毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。

数学学科毕业论文选题方向

一下的这些的选题你看下,你自己参考下,一1.极值的讨论及其应用2.课程改革中未来初中数学教师角色的扮演3.(xx部分)新旧教材的对比与研究4.师范生高等数学课程内容设置的探讨5.浅谈高等数学的类比迁移法6.让生活走进数学,将数学应用于生活7.初中数学新课程教学设计的策略8.数学分析的直观与严密二1.小教大专数学的课程设置和教材建设的建议2.新课改对小学数学教师的能力与素质要求3.小学数学教学中现代化教学手段的使用4.如何评价新形式下的师范学生5.数学学习与创新能力的培养三1.农村小学教师的现状的调查2.农村小学教学的现状的评估4.留守儿童的学习状况5.我对师范现行课程设置的几点思考6.班级管理的探讨7.小学数学课教学的探讨8.在师范学习的几点回顾9.走上“三尺讲台”的体会10.对某个“差生”的转变历程的思考四1.营造积极参与氛围,为自主探索创造条件2.浅谈小学数学作业的批改3.让作业批改“活”起来4.注重数学过程教学,提高学生综合素质5.浅谈中学数学课堂语言的艺术性6.活”用教材,实现数学教育目标7.浅谈数学课的几种导入方法8.初探分类思想在初中数学教学中的渗透9.优化复习教学,提高复习效率10.合理运用教具,提高数学课堂教学效率11.在数学教学中,培养学生的创新意识

论文的题目是论文的眼睛 ,是一篇文章成功的关键。下面我将为你推荐关于数学专业毕业论文题目参考的内容,希望能够帮到你!

1. 圆锥曲线的性质及推广应用

2. 经济问题中的概率统计模型及应用

3. 通过逻辑趣题学推理

4. 直觉思维的训练和培养

5. 用高等数学知识解初等数学题

6. 浅谈数学中的变形技巧

7. 浅谈平均值不等式的应用

8. 浅谈高中立体几何的入门学习

9. 数形结合思想

10. 关于连通性的两个习题

11. 从赌博和概率到抽奖陷阱中的数学

12. 情感在数学教学中的作用

13. 因材施教因性施教

14. 关于抽象函数的若干问题

15. 创新教育背景下的数学教学

16. 实数基本理论的一些探讨

17. 论数学教学中的心理环境

18. 以数学教学为例谈谈课堂提问的设计原则

1. 网络优化

2. 泰勒公式及其应用

3. 浅谈中学数学中的反证法

4. 数学选择题的利和弊

5. 浅谈计算机辅助数学教学

6. 论研究性学习

7. 浅谈发展数学思维的学习方法

8. 关于整系数多项式有理根的几个定理及求解方法

9. 数学教学中课堂提问的误区与对策

10. 中学数学教学中的创造性思维的培养

11. 浅谈数学教学中的“问题情境”

12. 市场经济中的蛛网模型

13. 中学数学教学设计前期分析的研究

14. 数学课堂差异教学

15. 一种函数方程的解法

16. 积分中值定理的再讨论

17. 二阶变系数齐次微分方程的求解问题

18. 毕业设计课题(论文主题等)

19. 浅谈线性变换的对角化问题

1. 浅谈奥数竟赛的利与弊

2. 浅谈中学数学中数形结合的思想

3. 浅谈中学数学中不等式的教学

4. 中数教学研究

5. XXX课程网上教学系统分析与设计

6. 数学CAI课件开发研究

7. 中等职业学校数学教学改革研究与探讨

8. 中等职业学校数学教学设计研究

9. 中等职业学校中外数学教学的比较研究

10. 中等职业学校数学教材研究

11. 关于数学学科案例教学法的探讨

12. 中外著名数学家学术思想探讨

13. 试论数学美

14. 数学中的研究性学习

15. 数字危机

16. 中学数学中的化归方法

17. 高斯分布的启示

  • 索引序列
  • 组合数学毕业论文选题方向
  • 毕业论文同组选题方向
  • 投资组合方向的毕业论文
  • 数学教学方向毕业论文选题
  • 数学学科毕业论文选题方向
  • 返回顶部